Model LTS6
RS232 OR RS485 SERIAL INPUT, ANALOG OUTPUT TRANSMITTER
Modbus or Custom ASCII Protocol

OWNERS MANUAL

LAUREL Electronics Inc.
3183-G Airway Ave, Costa Mesa, CA, 92626, USA
Tel: (714) 434-6131 Fax: (714) 434-3766 • Website: www.laurels.com
1. ORDERING GUIDE, SERIAL INPUT TRANSMITTER

Configure a model number in this format: **LTS60, CBL04**

- **LTS6**… Transmitter with 4-20 mA, 0-20 mA, 0-10V or -10V to +10V isolated analog output, RS232 or RS485 serial data input, and dual 120 mA solid state relays. Default jumpered for RS232.

- **LTSE6E**… Transmitter with 4-20 mA, 0-20 mA, 0-10V or -10V to +10V isolated analog output, Ethernet serial data input, and dual 120 mA solid state relays.

- **Power**

 0............................. 85-264 Vac or 90-300 Vdc
 1............................. 12-30 Vac or 10-48 Vdc

ACCESSORIES

- **CBL04**……RS232 cable, two 3-pin connectors on transmitter end, DB9 connector on computer end.

- **CBL02**……USB to DB9 adapter cable. Can be used with CBL01 or CBL04.
2. TABLE OF CONTENTS

1. ORDERING GUIDE, SERIAL INPUT TRANSMITTER .. 2
2. TABLE OF CONTENTS ... 3
3. INTRODUCTION, SERIAL INPUT TRANSMITTER .. 4
4. RECEIVING & UNPACKING YOUR TRANSMITTER ... 5
5. SAFETY CONSIDERATIONS .. 6
6. TRANSMITTER FIELD WIRING ... 7
7. JUMPER SETTINGS .. 8
8. PROGRAMMING YOUR TRANSMITTER .. 10
9. CUSTOM ASCII PROTOCOL TRANSMITTER COMMUNICATIONS 20
10. SPECIFICATIONS, SERIAL INPUT TRANSMITTER .. 23
11. WARRANTY .. 24
The LTS6 serial input to analog output transmitter (or serial-to-analog converter) accepts numeric readings embedded in streaming RS232 or RS485 ASCII serial data, and converts these to an isolated, scalable 4-20 mA, 0-20 mA, 0-10V or -10V to +10V analog output. The LTS6 utilizes an LT counter transmitter board, but no signal conditioner board. The unit fits on a 35 mm DIN rail and is only 22.5 mm (0.89") thick. It is normally powered by AC (85-264 Vac), but can optionally be powered by low voltage AC or DC, such as 24 Vdc. All electrical connections are via detachable screw-clamp plugs.

The current or voltage transmitter output is jumper selectable and is transformer isolated to avoid ground loops. Either output provides 16-bit resolution of the output span and is ultra-linear to within one bit. The output is scaled to the serial input in software. Output accuracy is ±0.02% of span.

Dual solid state relays rated 120 mA at 140 Vac or 180 Vdc are standard. The relays can respond to the transmitted serial values or to transmitted control characters, which override the internal setpoints. The relays can also be controlled independently of the serial input by applying signals to control inputs 1 and 2.

Isolation to 250V rms is provided for power, the serial data input, analog output, and relay outputs. Isolation adds safety and avoids possible ground loops.

Serial data input selections are RS232, half-duplex RS485, or full-duplex RS485. Selection is via jumpers and/or at the connector.

Transmitter setup is via the unit’s serial port using an external PC and Instrument Setup software, which can be downloaded from our website at no charge. The required 3-wire transmitter-to-PC interface RS232 cable (CBL04) is easy to build and is also available for purchase.

The LTS6 is not plug and play. The format of the strings being received must be known in advance, including non-printing control characters. If you do not know the format of your ASCII data, contact tech support of the manufacturer of the sending device. Or use a terminal emulator PC program, like HyperTerminal or RealTerm, to view the received data on your PC.

The LTS6 Ethernet input to analog output transmitter accepts streaming Ethernet data and converts it to an isolated, scalable 4-20 mA, 0-20 mA, 0-10V or -10V to +10V analog output. That transmitter is covered by a separate user manual.
4. RECEIVING & UNPACKING YOUR TRANSMITTER

Your transmitter was carefully tested and inspected prior to shipment. Should the transmitter be damaged in shipment, notify the freight carrier immediately. In the event the transmitter is not configured as ordered or is inoperable, return it to the place of purchase for repair or replacement. Please include a detailed description of the problem.
5. SAFETY CONSIDERATIONS

⚠️ Warning: Use of this transmitter in a manner other than specified may impair the protection of the device and subject the user to a hazard. Visually inspect the unit for signs of damage. If the unit is damaged, do not attempt to operate.

Caution:

- This unit may be powered with AC (mains) from 85-264 Vac or 90-300 Vdc with the high voltage power supply option, or 12-30 Vac or 10-48 Vdc with the low voltage power supply option. Verify that the proper power option is installed for the power to be used. This transmitter has no AC (mains) switch. It will be in operation as soon as power is applied.
- The 85-264 Vac or 90-300 Vdc mains connector (P1 Pins 1-3) is colored green to differentiate it from other input and output connectors. The 12-30 Vac or 10-48 Vdc mains connector is colored black.
- The analog output is sourcing. Do not connect the 4-20 mA analog output to a load designed to apply 24 Vdc to a two-wire transmitter. Applying 24 Vdc will burn out the main board.
- To avoid dangers of electrocution and/or short circuit, do not attempt to open the case while the unit is under power. However, signal wiring changes external to the case can be made safely while the unit is under power.
- To prevent electrical or fire hazard, do not expose the transmitter to excessive moisture.
- Do not operate the transmitter in the presence of flammable gases or fumes. Such an environment constitutes an explosion hazard.
- Secure the transmitter to a 35 mm DIN rail.

Symbols used:

⚠️ Caution (refer to accompanying documents)
⚠️ Caution, risk of electric shock.
☐ Equipment protected throughout by double insulation or reinforced insulation.
因地制 Earth (ground) terminal.
☐ Both direct and alternating current.

Operating environment:

- Class II (double insulated) equipment designed for use in Pollution degree 2.

To avoid overheating, mount transmitters with ventilation holes at top and bottom. Leave a minimum of 6 mm (1/4") between transmitters, or force air with a fan.
6. TRANSMITTER FIELD WIRING

Power GND, Digital GND, Analog Output GND, and Comm GND are mutually isolated to 250 Vac.

See section 8 for main board jumper settings.

For RS232, connect P2-3 to P2-2.

RS485
- 6 N/C
- 5 ARX
- 4 ATX
- 3 Comm GND
- 2 BRX
- 1 BTX

RS232
- 6 TX
- 5 RX
- 4 NC
- 3 GND
- 2 BRX
- 1 N/C

RS485 wiring
- 6 N/C
- 5 ARX / ATX
- 4 N/C
- 3 GND
- 2 BRX / BTX
- 1 N/C

RS485 wiring, full duplex
- 6 ATX / ARX
- 5 GND
- 4 BTX / BRX

RS485 wiring, half duplex
- 6 ATX / ARX
- 5 GND
- 4 BTX / BRX

RS485 wiring, half duplex
- 6 ATX / ARX
- 5 GND
- 4 BTX / BRX

DB9 connector to PC (rear view)
7. JUMPER SETTINGS

Serial Signal

<table>
<thead>
<tr>
<th>RS485</th>
<th>Duplex</th>
<th>Jumpers</th>
<th>Termination Resistor*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
<td>None</td>
<td>E6 a = Transmit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E6 c = Receive</td>
</tr>
<tr>
<td></td>
<td>Half</td>
<td>E6 b + d**</td>
<td></td>
</tr>
<tr>
<td>RS232</td>
<td>Full</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

* The termination resistor jumper settings should only be selected if the transmitter is the last device on an RS485 line longer than 200 feet (60 m).

** Or connect external BTX to BRX and ATX to ARX (same effect as internal jumpers).

To reset communications to 9600 baud, command mode, Custom ASCII protocol, and Address 1, place a jumper at E1, cycle power, remove the jumper, and restart the transmitter.

Analog Output

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>J4 Pins</th>
<th>Jumpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, 4-20 mA</td>
<td>1 Lo, 2 Hi</td>
<td>E2 a + d</td>
</tr>
<tr>
<td>Voltage, 0-10V</td>
<td>1 Lo, 2 Hi</td>
<td>E2 b + c</td>
</tr>
<tr>
<td>Voltage, -10V to +10V</td>
<td>3 Lo, 2 Hi</td>
<td>E2 b + c</td>
</tr>
</tbody>
</table>

Excitation Output

<table>
<thead>
<tr>
<th>Excitation Output</th>
<th>Jumper</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V, 100 mA</td>
<td>E3 a + c; E4 a</td>
</tr>
<tr>
<td>10V, 120 mA</td>
<td>E3 a + c; E4 b</td>
</tr>
<tr>
<td>24V, 50 mA</td>
<td>E3 b, E4 none</td>
</tr>
</tbody>
</table>

Notes:

1. Jumpers for 4-20 mA output are shaded. Jumper settings are for main board Rev J.
2. Attempting to draw more than rated excitation output current will shut down the output.
3. **The analog output is sourcing.** Do not apply an external voltage. Applying an external voltage of 24 Vdc will burn out the transmitter main board.
WHEN TO CHANGE JUMPERS

Your transmitter case does not need to be opened if jumpers have already been set by your distributor. Otherwise you will need to open the case and either set jumpers or verify that the factory default jumpers positions will meet your needs. Factory default jumper settings are for RS232 input and 4-20 mA output.

HOW TO OPEN & CLOSE THE CASE

The two clamshell halves of the case are held together with a bolt and a nut at each of the four corners. Use a Phillips screwdriver to remove the four bolts. The nut will then drop off, and the clamshell halves will separate. When closing the case, make sure that the ventilation grills are properly aligned.

Caution: The nuts at each corner are not captive and are black. Take precautions so that the nuts do not get lost.
OVERVIEW

Serial input transmitters are programmed using a PC with an RS232 port and Instrument Setup (IS) software, which provides a graphical user interface. The software allows uploading, editing, downloading and saving of setup data.

CONNECTING TO YOUR PC

Use a 3-wire RS232 cable (P/N CBL04) to connect your transmitter to the COM port of your PC. Download the file ISx_x_x.exe from our website and double-click on the file name. Click on “Install Instrument Setup Software” and follow the prompts. To launch IS software, press on Start => Programs => IS2 => Instrument Setup or on the desktop icon that you may have created. Following a brief splash screen, the Communications Setup screen will appear.

ESTABLISHING COMMUNICATIONS

In the Communications Setup screen, select Custom ASCII as the Protocol, as this is the factory default setting. Select Transmitter LT as the Device Type. Then click on the RS-232 (USB) button. In the resulting Establish Communications screen, select your Com Port and
9600 as the Baud Rate. You will be able to change your protocol and baud rate later under the Communication setup tab. Click on Establish, and the two fields at the bottom of the screen should turn green and display your communication parameters and the counter-transmitter revision level. Click on Main Menu. The computer will remember your communication settings for the next time that you run IS software.

The best way to learn IS software is to experiment with it. From the Main Menu, click on Counter => Get Setup to retrieve (or get) the existing setup data from your counter-transmitter. Click on View => Setup to bring up screens which allow you to easily edit the setup file using pull-down menus and other selection tools. You can download (or put) your edited file into the transmitter by clicking on Counter => Put Setup. You can save your setup file to disk by clicking on File => Save Setup and retrieve a previously saved file from disk by click on File => Open.

After selecting a screen input field, pressing the F1 key will bring up detailed help information for that field.

Note the LTS6 serial-to-analog converter needs to receive continuous streaming serial data, which can be RS232 or RS485. It cannot issue request commands.
SETTING UP BASIC OPERATION

Set **Signal input** to None. Set **Time Out** to 000.00 Secs if you want the analog output to be held indefinitely in the absence of a new serial input, or specify another time in seconds. Ignore **Signal Input**, **Gate Time**, **Filter** and **Power-On Total**, as these parameters do not apply to the serial output transmitter.

Under Display, select one of the Remote operating modes shown. These modes are further explained under the “Custom ASCII Protocol Transmitter Communications” section of this manual. In the modes below:

- **Remote A** = Addressable remote display mode for string *#LSDDDD.DDA<CR><LF>, where * is the recognition character, # is the address, L is a command character which can be H, K or L, S is sign (space or + for positive, - for negative), D is a digit from 0 to 9, A is an optional alarm character which overrides internal alarm comparisons, <CR> is the carriage return character, and <LF> is an optional line-feed character, which is ignored. The following modes are available:
 - **Remote S** = Single value, non-addressable remote display for SDDDD.DDA<CR> <LF>
 - **Remote 1** = 1st value of value sequence SDDDD.DDSDDDD.DDSDDDD.DDSDDDD.DD
 - **Remote 2** = 2nd value of value sequence SDDDD.DDSDDDD.DDSDDDD.DDSDDDD.DD
 - **Remote 3** = 3rd value of value sequence SDDDD.DDSDDDD.DDSDDDD.DDSDDDD.DD
 - **Remote 4** = 4th value of value sequence SDDDD.DDSDDDD.DDSDDDD.DDSDDDD.DD
Remote 1-4 allow multiple value to be extracted from Laureate transmissions. Data sequences with up to three data values can be generated by Laureate digital panel meters and transmitters (current reading, Peak, Valley). Data sequences with up to four data values can be generated by Laureate counters (Items 1, 2, 3, Peak). Please refer to our DPM and counter manuals.

Remote C = Masked remote display. Allows data extraction from a long string as specified under the Communication tab. The required data entry fields will only appear under the Communication tab if Display Type has been specified as Remote C under the Input+Scaling tab. Works only with the Custom ASCII protocol, not the Modbus protocol, since a transmitter cannot listen to commands while in the Remote C display type. For more information on Remote C, see the manual section for the Communication tab.

After you have entered all settings in Instrument Setup Software, click on the Main Menu button. Click on the Counter tab and do a Put Setup. This will download your setup from the PC into the LTS6. Then exit Instrument Setup Software completely and disconnect your LTS6.

REMOTE C WARNING:

Do not execute a Main Menu > Counter > Get Setup command if you have placed the transmitter into the Remote C mode, since that mode does not support Instrument Setup communications. Instrument Setup Software will reset the transmitter to Remote A so that it can retrieve setup information from the transmitter. Reconnecting the LTS6 to a PC and using Instrument Setup Software, for example to check on previously programmed settings, will also take the LTS6 out of Remote C back into the Remote A. In that case, you will need to reset the LTS6 to Remote C and do a Put Setup to re-download your setup into the LTS6.

The Control Inputs pull-down menu controls the effect of grounding Control Input 1, Control Input 2, or both. Selections applicable to the serial input transmitter are the following:

- **Meter Reset, Function Reset, Meter Reset** (first row). When this row is selected, grounding Control Input 2 (causes a function reset, which resets latched alarms.

- **Activate Alarm 1, Activate Alarm 2, Activate Alarm 1&2**. When this row is selected, grounding Control Input 1 activates relay 1, grounding Control Input 2 activates relay 2, and grounding both inputs activates Alarms 1 & 2.

- **Tare Enable, Tare if Enabled, Tare** (last row). When this row is selected, grounding Control Input 1 (normally with a permanent connection) enables the Tare function. Momentarily grounding Control Input 2 stores the current digital value as an offset and subtracts this offset from the digital reading sent to the transmitter, resulting in a zero value for alarms and the analog output. This offset will also be subtracted from all new readings sent to the transmitter. To change the offset, momentarily ground Control Input 2 for the new input.
SETTING UP COMMUNICATIONS (REMOTE A & S MODES)

The above screen will appear under the Communication tab if Remote A or Remote S has been selected as Display Type under the Input+Display tab. These two modes are not able to extract data from an ASCII string that contains multiple data values and non-numeric characters.

Under this tab, you can reselect your Baud Rate, Device Address, Serial Protocol, and Full/Half Duplex, even though you may have selected different values to establish initial communications with your PC.

Set Output Mode to Command. Ignore the setting for CR(LF), Output Items, Output Filter, and Output Rate, as these items apply to digital transmission by a counter-transmitter, not to digital-to-analog conversion by the serial input transmitter.
The above screen will appear under the Communication tab if Remote C has been selected as Display Type under the Input+Display tab. This mode is able to extract data from ASCII strings that contain multiple data values and non-numeric characters. Please see the F1 Help screen to the right.

Under this tab, you can reselect Baud Rate, Device Address, Serial Protocol, and Full/Half Duplex, even though you may have selected different values to establish initial communications with your PC.

Set Output Mode to Command. Ignore CR(LF), Output Items, Output Filter and Output Rate, as these items apply to digital transmission by a counter-transmitter, not to digital-to-analog conversion by the serial input transmitter.

The number of characters shown can be up to 7, including 6 digits and a decimal point. Include leading zeros, such as 00300.0
Under the Analog Out tab, set Source to Item 3. Under Range, select 0-20 mA, 4-20 mA, 0-10V or -10V to +10V as your desired analog output. Enter your Lo Range Reading and Hi Range Reading. These will create the two endpoint values of your analog output range. Only enter the numerical values. The decimal point is ignored. The span between the two values should be at least 256 counts to minimize the size of analog output steps.
Dual AC/DC solid state relays rated 120 mA are standard for alarm or setpoint control and are independently set up via the “Relay Alarms” tab. Set “Alarm Source” to “Item 3” as illustrated. For online help with any data entry field, press the F1 key.

- **Setpoint.** The number to which the current reading is compared if deviation is set to zero. The reading is the count in engineering units that is transmitted digitally and is also used for analog output. For example, if the transmitted reading is in gallons/minute, the setpoint will be referenced to that reading, not to the raw pulse rate sent from a turbine flow meter.
- Deviation. A positive number that can be added or subtracted from the setpoint, depending on the Deviation Type, to determine when an alarm becomes Active or Inactive.

- Alarm Source. Depending on the Signal Input Mode and Function selected under the Input+ Display tab, the alarm can be assigned to any of up to three Items, for example to Item 1 (A rate / B rate), Item 2 (A rate), or Item 3 (B rate).

- Alarm State. If “Active High” is selected, the Active Alarm State is defined as being above the setpoint. If “Active Low” is selected, the Active Alarm State is defined as being below the setpoint. If “Disabled” is selected, the Alarm State is always inactive.

- Relay State. A setting with ties the Relay State to the Alarm State. If “Active On” is selected, the relay will be closed when the Alarm State is 1. If “Active Off” is selected, the relay will be open when the Alarm State is 1.

- Deviation Type. Three choices are offered: Split Hysteresis, Span Hysteresis, and Band Deviation. These define how Setpoint and Deviation are to be combined to set Alarm State.

In Split Hysteresis, the relay opens (or closes) when the reading goes above the Setpoint plus one Deviation, and closes (or opens) when the reading falls below the Setpoint less one Deviation. Two Deviation limits lie symmetrically around the Setpoint to create a deviation band. A narrow hysteresis band is often used to minimize relay chatter. A wide band can be used for on-off control.

In Span Hysteresis, operation is as for Split Hysteresis, except that the Setpoint is always on the high side, and a single Deviation lies below the Setpoint to create the hysteresis band. Span Hysteresis is considered by some to be more intuitive than Split Hysteresis.

In Band Deviation, the relay opens (or closes) when the reading falls within the deviation band, and closes (or opens) when the reading falls outside. Two deviation limits lie symmetrically around the setpoint to create the deviation band. Passbands around a setpoint are often used for go-no-go component testing.
- Alarm Type. Selections are Non-Latching and Latching. Under Non-Latching, the relay is only closed (or open) while the Alarm State is Active. Under Latching, the activated relay remains closed (or open) until reset regardless of the Alarm State. Resetting is normally achieved by temporarily grounding one of the transmitter’s control inputs, which has been set to Function Reset under the “Input+Display” tab.

- Alarms 1,2 No. Rdgs to Alarm. Selections are binary steps from 1 to 128. This is the number of consecutive alarm readings that must occur to create an Active alarm. Numbers higher than 2 provide some Alarm filtering so that 1 or 2 noisy readings do not cause an Active Alarm. The Alarm becomes Inactive if one of the consecutive readings fails to be an Alarm reading. The Alarm readings counter then resets to 0.
9. CUSTOM ASCII PROTOCOL TRANSMITTER COMMUNICATIONS

All setup parameters are entered into the transmitter via Instrument Setup (IS) software, including the serial communication format, digital address, operating mode, analog output scaling, and relay operating modes and setpoints.

1. SERIAL COMMUNICATION FORMAT

The Custom ASCII serial communication format for both RS232 and RS485 is the following:

Modes.............. Full Duplex (separate transmit and receive lines) or Half Duplex (RS485 only).
Baud Rate 300, 600, 1200, 2400, 4800, 9600, 19200 selectable with IS software.
Data Format 8 data bits, no parity, 1 stop bit

2. DATA FORMAT

The basic input data format consists of 9 or 10 ASCII characters, such as +9999.99A<CR>. The first character is always a plus or minus sign. There are 6 numeric digits. A decimal point is always required, even when it follows the last digit. The letter “A” is an optional alarm character. <CR> is the carriage return character. A line feed <LF> character at the end of the string is ignored.

3. NETWORK CONFIGURATIONS

Using the Custom ASCII protocol, serial input transmitters can operate in a point-to-point mode using RS232 or RS485, or in a multi-point mode using RS485:

The point-to-point mode is a direct connection between a computer (or other digital device) and the transmitter. It is suggested that address 1 be selected for the point-to-point mode.

The multi-point mode is a connection from a host computer to multiple transmitters bused together with their inputs and outputs connected in parallel. It is necessary to set up each device on the bus with a different address from 1 to 31. To write to a particular device, its address is used in conjunction with the data, and only that device will respond. The outputs of all devices on the bus are set to a high impedance state, except the device being addressed. Zero (0) is a special address to which a device responds only internally (e.g. Reset), but it does not transmit any response on the output lines. All devices may be written to simultaneously with a 0 address, and there will not be any output response contention.

4. OPERATING MODES

The serial input transmitter has multiple serial input modes, which are dedicated to the analog output and relays based on serial data received via RS232 or RS485:

Remote A is an addressable input mode (up to 31 units) that uses the K command letter. It can convert remote data on one or more transmitters having the command address in a multi-point or point-to-point configuration.
Remote S is not addressable, and data representing a value to be retransmitted as an analog output is received via a point-to-point connection. The value is stored where it may be selected for Alarm comparisons. If a Coded Alarm character is included, it overrides the internal alarm comparisons. The absence of addressing makes Remote S faster than Remote A.

Remote 1-4 allow multiple value to be extracted from Laureate transmissions. Data sequences with up to three data values can be generated by Laureate digital panel meters and transmitters (current reading, Peak, Valley). Data sequences with up to four data values can be generated by Laureate counters (Items 1, 2, 3, Peak). Please refer to our DPM and counter manuals.

Remote C is used to extract data from an ASCII string that contains multiple data values and non-numeric characters. It can accommodate selected Start and Stop characters. Any number of characters after the start character can be masked off up to the beginning of the desired data. From 1 to 6 numeric characters can be selected for the data (8 characters if sign and decimal point are included). The following parameters determine the operation:

1. **Start character.** This can be any ASCII character in the received string. It must be at a fixed number of characters from the beginning of the desired data, which must have a fixed number of characters. Enter 00 if no start character is available. The stop character then becomes the start character.
2. **Stop character.** Set to 00 if no stop character is available. **Note:** Only either the start or stop character can be set to 00. The start and stop characters cannot be any character included in the data string.
3. **Skip No.** Number of characters following the Start character to be ignored.
4. **Show No.** Number of characters following the ignored characters to be processed.

Warning: Instrument Setup (IS) software sets the mode to Remote A when first accessing the transmitter or performing a Get Setup command. This is because the transmitter will not communicate with the host PC using IS software in the Remote C mode. The user must reset the mode to Remote C prior to executing a Put Setup command, which will load the setup information into the transmitter.

If you desire the transmitter to operate in the Remote C mode and you later need to perform a Get Setup command to change a setup parameter, do not forget to change the transmitter back from Remote A to Remote C prior to performing a Put Setup command.

Remote A Data Format: *#KSDDDDDD.A<CR>*

* = Recognition character. Another command recognition character may be chosen to make the transmitter compatible with an existing system. The transmitter will still respond to an asterisk.
= Device address. See Address Codes table on next page.
K = Command letter.
S = Sign of value (optional), space (or +) for positive, - for negative value.
D = Data. Number of digits can be 1-6.
. = Decimal point (optional).
A = Alarm Character (optional). A = no alarms, B = alarm 1 active, C = alarm 2 active,
 D = alarms 1 & 2 active.
<CR> = Carriage return character

Remote S Data Format: SDDDDDD.A<CR>

S = Sign of value (optional), space (or +) for positive, - for negative value.
D = Data. Number of digits can be 1-6.
. = Decimal point (optional).
A = Alarm Character (optional). A = no alarms, B = alarm 1 active, C = alarm 2 active,
 D = alarms 1 & 2 active.
<CR> = Carriage return character

Remote C Data Format: STXXXSDDDDDD.SP

ST = Start character
XXX = Data to be ignored (Skip No.)
S = Sign of value (optional), space (or +) for positive, - for negative value.
D = Data. Number of digits can be 1-6 (Show No.)
. = Decimal point (optional).
SP = Stop character

CHAR 2 - Address Codes for Remote A

A Serial Communications Address Code from 1 to V follows the “*” to indicate the device
address address number from 1 to 31.

<table>
<thead>
<tr>
<th>Device #</th>
<th>Address Code</th>
<th>Device #</th>
<th>Address Code</th>
<th>Device #</th>
<th>Address Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>C</td>
<td>23</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13</td>
<td>D</td>
<td>24</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>14</td>
<td>E</td>
<td>25</td>
<td>P</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15</td>
<td>F</td>
<td>26</td>
<td>Q</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16</td>
<td>G</td>
<td>27</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>17</td>
<td>H</td>
<td>28</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>18</td>
<td>I</td>
<td>29</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>19</td>
<td>J</td>
<td>30</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>20</td>
<td>K</td>
<td>31</td>
<td>V</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>21</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>22</td>
<td>M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. SPECIFICATIONS, SERIAL INPUT TRANSMITTER

Serial Data Input

Signal Levels.. RS232, full-duplex RS485, half-duplex RS485 (selectable)
Protocol Modbus RTU, Modbus ASCII, Custom ASCII (software selectable)
Serial Connector ... Detachable dual 3-position plugs

Analog Output (standard)

Output Levels.. 0-20 mA, 4-20 mA, 0-10V, -10V to +10V (selectable)
Compliance at 20 mA.. 10V (0-500 ohm load)
Compliance at 10V... 2 mA (5 kohm minimum load)
Output Resolution ... 16 bits (65,535 steps)
Output Error .. < 0.02% of full span
Output Update Rate Determined by serial input rate. Approx 75/sec max at 19200 baud

Dual Relay Output (standard)

Relay Type .. Two solid state relays, SPST, normally open, Form A
Load rating ... 120 mA at 140 Vac or 180 Vdc
Relay modes Active high or low, latching or non-latching, hysteresis or band deviation

Power & Electrical

Power to Transmitter .. 85-264 Vac or 90-300 Vdc (standard power)
... 12-30 Vac or 10-48 Vdc (low voltage power option)
Power Isolation.............. 250 Vrms between power, analog output, signal input, and serial I/O

Transmitter Setup

Transmitter setup Instrument Setup software using PC and CBL04 cable

Mechanical

Case Dimensions ... 129 x 104 x 22.5 mm
Case Mounting .. 35 mm DIN rail per EN 50022
Electrical Connections .. Detachable screw plug connectors

Environmental

Operating Temperature ... 0°C to 55°C
Storage Temperature ... -40°C to 85°C
Relative Humidity .. 95% from 0°C to 40°C, non-condensing
11. WARRANTY

Laurel Electronics Inc. warrants its products against defects in materials or workmanship for a period of one year from the date of purchase.

In the event of a defect during the warranty period, the defective unit may be returned to the seller, which may be Laurel or a Laurel distributor. The seller may then repair or replace the defective unit at its option. In the event of such a return, freight charges from the buyer shall be paid by the buyer, and freight charges from the seller shall be paid by the seller.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from:

1. Improper installation or miswiring.
2. Improper or inadequate maintenance.
3. Unauthorized modification or misuse.
4. Operation outside the environmental specifications.
5. Mishandling or abuse.

The warranty set forth above is exclusive and no other warranty, whether written or oral, is expressed or implied. Laurel specifically disclaims implied warranties of merchantability and fitness for a particular purpose.

Any electronic product may fail or malfunction over time. To minimize risks associated with reliance on Laurel products, users are expected to provide adequate system-level design and operating safeguards. Laurel's products are intended for general purpose industrial or laboratory use. They are not intended nor certified for use in life-critical medical, nuclear, or aerospace applications, or for use in hazardous locations.

EXCLUSIVE REMEDIES

The remedies provided herein are Buyer’s sole and exclusive remedies. In no event shall Laurel be liable for direct, indirect, incidental or consequential damages (including loss of profits) whether based on contract, tort, or any other legal theory.