Time Interval Mode for Time Delay |
 |
For periodic pulses applied to A and B channels, time delays can be measured down to 0.2 µs resolution from the rising or falling edge of A to the rising or falling edge of B (selectable). |
Time Interval Mode for Pulse Width |
 |
The width of periodic pulses (t1 or t2) can be measured by tying the A and B channels together. As for time delay, readings are averaged over a user-selectable gate time. |
Timing Process Dynamics with a Panel Meter and Time Interval Meter |
 |
The start and stop pulses used for timing can be generated by the dual relay board in a Laureate panel meter or digital counter. For instance, the start and stop pulse edges can be created as temperature passes two alarm setpoints, or temperature cycles in a hysteresis control mode. |
Rate Based on 1 / Time |
 |
The Extended stopwatch meter can be programmed to display highly accurate rate based on elapsed time. A pulse or switch closure can initiate timing, while another pulse or switch closure stops timing. The meter can be programmed with multipliers to display rate in appropriate engineering units, such as meters/sec, for any time duration. |
Replacing an Oscilloscope with a Laureate Time Interval Meter |
 |
An oscilloscope is great for viewing and timing pulses in a lab. However, in fixed installations where digital timing accuracy and control outputs are required, a low-cost Laureate time interval meter will be the instrument of choice. Resolution to 0.2 µs is feasible. |
Instrumenting a Pulsed Laser System Using Laureate Counters |
 |
Some of the many possibilities in instrumenting a pulsed laser system with Laureate dual-channel counters. |