Features
- Times periodic events with width from 1 µs to 199.999 s
- Transmits average time of periodic events with width from 1 µs to 199.999 s
- Resolution to 0.2 µs, rep rated to 250 kHz
- Inputs from NPN or PNP proximity switches, contact closures, digital
logic, magnetic pickups down to 12 mV, or AC inputs up to 250 Vac - Trigger on positive or negative pulse edges
- Digital span adjust from 0 to ±999,999, zero adjust from -999,999 to +999,999
- Front panel scalable to ±999,999 for use with current shunts
- 1/8 DIN size with bright red or green 0.56" (14.2mm), high LED digits
- Transducer excitation output, 5, 10, 12, or 24 Vdc (isolated)
- Power 85-264 Vac / 90-300 Vdc or 10-48 Vdc / 12-32 Vac (isolated)
- Operating temperature from -40°C to 70°C (-40°F to 158°F)
- Wide choice of Plug-in-Play options:
- 2 or 4 relays, mechanical or solid state, for alarm or control (isolated)
- 1 or 2 Analog output, 4-20 mA, 0-20 mA, 0-10V, or -10V to +10V (isolated)
- Communications: Ethernet, WiFi, USB, RS232, RS485 (isolated)
- Extended DPM includes rate and total simultaneously, dynamic up-down counting, arithmetic functions
The Laureate™ 1/8 DIN Digital Panel Meter for A-to-B Time Interval
can display pulse width or time delay between individual pulses to a resolution of 0.2 µs. It can also display average pulse width or average time delay between multiple pulses.Time interval is measured between inputs on channels A and B. Timing starts when a pulse is applied to Channel A (selectable positive or negative edge), and ends when a pulse is applied to Channel B (selectable positive or negative edge). In case of a single pulsed signal, the A and B inputs can be tied together. A positive or negative slope may be selected to start timing, and the opposite slope must be selected to stop timing. Timing is achieved by counting 5.5 MHz clock pulses. Multiple integral time intervals are averaged over a gate time which is selectable from 10 ms to 199.99 s and also controls the display update time.
Time interval can be displayed in seconds, milliseconds, or microseconds with 6-digit resolution. In the typical application, time is displayed in milliseconds with 1 µs resolution. For times less than 100 ms, display resolution down to 0.2 µs can be achieved by applying a multiplier of 10, moving the decimal point by one position, and averaging many time intervals.
Highly accurate rate can be displayed by taking the inverse of time. Extensive arithmetic capabilities allow display in engineering units, such as meters/sec. An Extended main board version offers all features of Standard main board plus rate based on 1/time.
The FR dual-channel signal conditioner board accepts inputs from proximity switches with a PNP or NPN output, TTL or CMOS logic, magnetic pickups, contact closures, and other signals from 12 mV to 250 Vac. Jumper selections provide optimum operation for different sensor types and noise conditions. A built-in (isolated) 5, 10, 12, or 24 Vdc excitation supply can power proximity switches and other sensors, and eliminate the need for an external power supply.
Extended DPM includes rate and total simultaneously, dynamic up-down counting, arithmetic functions applicable to channels A & B (A+B, A-B, A/B, AxB, A/B-1), phase angle, power factor, duty cycle, batch control, custom curve linearization.
Laureate Digital Panel Meters are easily programmed with Laurel’s free Instrument Setup Software, downloadable from our website and compatible with Windows PCs, requiring a data interface board for setup.
All signal conditioner board ranges are factory-calibrated, with calibration factors for each range securely stored in an onboard EEPROM. These factors can be scaled via software to accommodate external shunts, enabling field replacement of signal conditioner boards without necessitating recalibration of the associated digital panel meter. For optimal accuracy, factory recalibration is recommended annually. All Laurel Electronics instruments undergo factory calibration using the industry-leading Fluke calibrators, which are recalibrated yearly and certified traceable to national standards, ensuring the highest level of precision and reliability.
- An unfiltered selection provides true peak and valley readings and aids in control applications.
- A batch average filter selection averages each 16 conversions.
- An adaptive moving average filter selection provides a choice of 8 time constants from 80 ms to 9.6 seconds. When a significant change in signal level occurs, the filter adapts by briefly switching to the shortest time to follow the change, then reverts back to its selected time constant. An Auto setting selects the time constant selection based on signal noise.
Peak and valley values are automatically captured. These may be displayed via a front panel pushbutton command or control signal at the rear connector, or be transmitted as serial data.
Two rear panel control Inputs (CMOS/TTL levels, logic 0 = tied to digital ground, logic 1 = open) or dry contacts that can be set to control / activate 14 meter commands.
An (isolated) 5, 10, 12, or 24 Vdc excitation output is standard to power transducers or two-wire transmitters. Ratiometric operation, which automatically compensates for changes in the applied excitation, is jumper selectable for applications, such as bridges, where the signal to be measured is proportional to the excitation level.
Modular Design for Maximum Flexibility at Minimum Cost
All boards are isolated from meter and power grounds. Optional Plug-in-Play boards for communications and control include Ethernet, WiFi, serial communication boards, dual or quad relay boards, and an analog output board. Laureates may be powered from 85-264 Vac or optionally from 12-32 Vac or 10-48 Vdc. The display is available with bright red or green 0.56" (14.2mm) high LED digits. The 1/8 DIN case meets NEMA 4X (IP65) specifications from the front when panel mounted. Any setup functions and front panel keys can be locked out for simplified usage and security. A built-in 5, 10, 12, or 24 Vdc excitation supply can power transducers, eliminating the need for an external power supply. All power and signal connections are via UL / VDE / CSA rated screw clamp plugs.
The Laureate™ Series features modular design with up to 7 isolated plug-in boards, applicable to all Laureate 1/8 DIN Digital Panel Meters.
Modular Hardware
The design of the Laureate™ Series is modular for maximum flexibility at minimum cost. All boards are isolated from meter and power grounds. The base configuration for a panel meter or counter consists of a main module (with computer and plug-in display boards), a power supply board, and a signal conditioner board. Optional plug-in-play boards include an isolated setpoint controller board, an isolated analog output board, and an isolated digital interface board. Modular design and a choice of plug-in options allow the Laureate to be customized for a broad range of applications from simple monitoring to control and computer interface. There can be up to five plug-in boards in a 1/8 DIN Laureate.

Connecting Laureate Digital Panel Meters to a Local Area Network (LAN)
Up to 30 Laureate Digital Panel Meters and/or LT Transmitters can be configured for RS485 and daisy-chained to an LT Transmitter using Laurel’s High Speed Ethernet-to-RS485 converter board for seamless LAN integration. Alternatively, Laurel LTE series Ethernet transmitters can connect directly to a LAN via an Ethernet cable. Setup for both configurations is streamlined using Laurel’s free Instrument Setup Software, which simplifies node discovery and transmitter configuration.
Flexible Communication Options for Digital Panel Meters
Laureate Digital Panel Meters can be equipped with Laurel communication boards to support various interfaces and protocols. These include serial interfaces with ASCII or Modbus RTU protocols, and Ethernet interfaces with web access, ASCII, or Modbus TCP/IP protocols, ensuring versatile connectivity for your commercial applications.
Display | |
---|---|
Readout | 6 LED digits, 7-segment, 14.2 mm (.56"), red or green. |
Range | -999999 to +999999 |
Indicators | Four LED lamps |
Inputs | |
Types | AC, pulses from NPN, PNP transistors, contact closures, magnetic pickups. |
Signal Ground | Common ground for channels A & B |
Channel A Freq. | 0 Hz to 1 MHz |
Channel B Freq. | 0 Hz to 250 kHz |
Minimum Signal | Nine ranges from (-12 to +12 mV) to (+1.25 to +2.1V). |
Maximum Signal | 250 Vac |
Noise Filter | 1 MHz, 30 kHz, 250 Hz (selectable) |
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. | |
Time Interval Mode | |
Timing Start | Channel A pulse, + or - edges |
Timing Stop | Channel B pulse, + or - edges |
Periodic Timing Interval | Gate time + 30 ms + 0-2 time intervals |
Gate Time | Selectable 10 ms to 199.99 s |
Time Before Zero Output | Selectable 10 ms to 199.99 s |
Resolution | |
0 - 199.999 s | 1 ms |
0 - 99.9999 s | 100µs |
0 - 9.99999 s | 10 µs |
0 - .999999 s | 1 µs |
0 - .099999 s | 0.2 µs |
Accuracy | |
Time Base | Crystal calibrated to ±2 ppm |
Span Tempco | ±1 ppm/°C (typ) |
Long-term Drift | ±5 ppm/year |
Maximum Signal | |
Max applied voltage | 600 Vac for 20, 200 and 300 V ranges, 125 Vac for other ranges |
Overcurrent protection |
25x for 2 mA, 8x for 20 mA, 2.5x for 200 mA, 1x for 5 A |
Power Supply Boards (one required) | |
Voltage, standard | 85-264 Vac or 90-300 Vdc |
Voltage, optional | 12-32 Vac or 10-48 Vdc |
Frequency | DC or 47-63 Hz |
Power consumption | 1.2W @ 120 Vac, 1.5W @ 240 Vac, 1.3W @ 10 Vdc, 1.4W @ 20 Vdc, 1.55W @ 30 Vdc, 1.8W @ 40 Vdc, 2.15W @ 48 Vdc (typical, base meter) |
Power Isolation | 250V rms working, 2.3 kV rms per 1 min test |
Excitation Output (standard) | |
5 Vdc | 5 Vdc ± 5%, 100 mA (jumper selectable) |
10 Vdc | 10 Vdc ± 5%, 120 mA (jumper selectable) |
12 Vdc | 12 Vdc ± 5%, 100 mA (jumper selectable) |
24 Vdc | 24 Vdc ± 5%, 50 mA (jumper selectable) |
Output Isolation | 50 Vdc from signal ground |
Analog Output Boards (one optional) | |
Output levels | 4-20 mA, 0-20 mA, 0-10V, -10 to +10V (jumper selectable) |
4-20 mA, 0-20 mA, 0-10V (dual-output option) | |
Current compliance | 2 mA at 10V ( > 5 kΩ load) |
Voltage compliance | 12V at 20 mA (< 600 Ω load) |
Scaling | Zero and full scale adjustable from -99999 to +99999 |
Resolution | 16 bits (0.0015% of full scale) |
Isolation | 250V rms working, 2.3 kV rms per 1 min test |
Relay Output Boards (one optional) | |
Dual magnetic relays | 2 Form C, 8A max, 440Vac or 125Vdc max, 2500VA or 300W |
Quad magnetic relays | 4 Form A (NO), 8A max, 440Vac or 125Vdc max, 2500VA or 300W |
Dual solid state relays | 2 Form A (NO), AC or DC, 0V - 400V, 120Ma, 35Ohms (max at On-State) |
Quad solid state relays | 4 Form A (NO), AC or DC, 0V - 400V, 120Ma, 35Ohms (max at On-State) |
Relay commons | Isolated commons for dual relays or each pair of quad relays |
Relay isolation | 250V rms working, 2.3 kV rms per 1 minute test |
Relay latching modes | Latching or non-latching |
Relay active modes | Active on or off, active high or low |
Hysteresis modes | QA passband mode, split hysteresis, span hysteresis |
Communication Boards (one optional) | |
Board selections | RS232, RS485 with dual RJ11 connectors, RS485 with dual RJ45 connectors, USB, Ethernet, USB-to-RS485 gateway, Ethernet-to-RS485 gateway, WiFi with built-in antenna plus USB & RS485, WiFi with external antenna plus USB & RS485 |
Protocols | Laurel Custom ASCII (serial), Modbus RTU (serial), Modbus TCP (Ethernet or WiFi) |
Digital addresses | 247 (Modbus), 31 (Laurel ASCII), |
Isolation | 250V rms working, 2.3 kV rms per 1 min test |
Environmental | |
Operating temperature | -40°C to 70°C (-40°F to 158°F) |
Storage temperature. | -40°C to 85°C (-40°F to 185°F) |
Relative humidity | 95% at 40°C, non-condensing |
Protection | NEMA-4X (IP-65) when panel mounted |
Signal Connections | |
![]() |
|
Mechanical | |
Enclosure | 1/8 DIN, high impact plastic, UL 94V-0, color: black |
Mounting | 1/8 DIN panel cutout required: 3.622" x 1.772" (92 mm x 45 mm). |
Dimensions | 4.68" x 2.45" x 5.64" (119 mm x 62 mm x 143 mm) (W x H x D) |
Maximum panel thickness | 4.5 mm (0.18") |
Tightening Torque - Connectors | Screw terminal connectors: 5 lb-in (0.56 Nm) |
Tightening Torque - Pawls | Digital Panel Meter Case Pawls: 5 lb-in (0.56 Nm) |
Weight of base meter | 210 g (7.4 oz) typical (DPM, counter, timer, 6-digit remote display) |
Weight of option boards | 30 g (1.0 oz) typical per board (analog output, relay output, communications) |
General | |
Programming Methods | Four front panel buttons or via Laurel's free Instrument Setup Software, which runs on a PC under MS Windows. |
Security | Lockout options include using the front panel buttons, the free Instrument Setup Software, or a hardware jumper. |
Warranty | 3 years parts & labor |
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. |
Free Instrument Setup Software for Series 2 Laureates
Free Downloadable Windows-based Instrument Setup (IS) software (Data Interface Board Required) for use with our programmable Digital Panel Meters, Scale Meters, Counters, Timers, Remote Displays, and Transmitters, are an easy method to set up Laureate 1/8 DIN digital panel meters, counters, timers, remote displays, and DIN-rail transmitters, as explained in the Instrument Setup Software Manual. Laureate 1/8 DIN instruments can also be set up from the front panel, as explained in their respective Owners Manuals. Instrument Setup software is of benefit whether or not the PC is connected to the instrument.
- When the PC is connected to the instrument, Instrument Setup software can retrieve the setup file from the instrument or open a default setup file or previously saved setup file from disk View Setup, then provides graphical user interface (GUI) screens with pull-down menus applicable to input, display, scaling, filtering, alarms, communications, analog output, and front panel lockouts. Fields that are not applicable to the instrument as configured are either left out or grayed out. Clicking on any item will bring up a detailed Help screen for that item. After editing, the setup file can be downloaded, uploaded to the instrument, or saved to a disk. The same setup file can then be downloaded into multiple instruments.
- When the PC is not connected to the instrument, the above GUI screens can be used to set up a virtual instrument. The setup file can then be saved to disk. Switching toView Menu then brings up a screen with the required front panel programming steps. This view can be printed out for use at the instrument site and to serve as a hard copy record.
Download Free Instrument Setup Software
Installation
Set User Account Control (UAC) of MS Windows to "Never notifiy me" so that Instrument Setup Software can create directories. The UAC change screen can be reached as follows:
- Under Windows 7, click on the Windows Start button in the lower left of the desktop and enter "UAC" in the search field.
- Under Windows 8, navigate to Control Panel, then to the "User Accounts and Family Safety" section, and click on "Change User Account Control Settings."
- Under Windows 10, click on the Windows Start button in the lower left of the desktop, then on "Settings", and enter "UAC" in the search field.
- Reboot your computer for the changed UAC setting to take effect.

RJ11-to-DB9 cable with rear view of DB9 connector to PC

RS232 cable, meter to PC, P/N CBL01
Laureate 1/8 DIN Laureate instruments must be equipped with a serial communications board and be connected to the computer via a serial communications cable. The connection can be via RS232, RS485, USB or Ethernet. Following setup, the serial communications board may be removed from the instrument if desired. The wiring of the RS232 cable is illustrated above with end views of the two connectors.
Laureate LT Series transmitters come standard with a 3-wire serial interface, which can be jumpered for RS232 or RS485.
Laureate LTE Series transmitters come standard with an Ethernet interface.
Meter Setup Screens
Click on any of the reduced screens below for a full-size screen view, then click on the Back button of your browser to return to this page. The screens examples below are for a fully-loaded Series 2 Digital Panel Meter (DPM), which is connected to the PC via RS232. If the meter is a Series 1 meter (pre-2007), this is sensed by the software, and somewhat different screens are brought up. Please see Series 1 setup screens.











Meter Setup Utilities




From the Main Menu, click on Readings if your PC is connected to the meter. A pull-down menu then offers three choices: List, Plot and Graph.
- List presents the latest readings in a 20-row by 10-column table. Press Pause at any time to freeze the display. This is one method to capture peak readings.
- Plot generates a plot of readings vs. time in seconds. It effectively turns the DPM-PC combination into a printing digital oscilloscope.
- Graph generates a histogram where the horizontal axis is the reading and the vertical axis is the number of occurrences of readings. The display continually resizes itself as the number of readings increases.


Laureate™ 1/8 DIN Case For Laureate Digital Panel Meters, Counters, Timers & Remote Displays

Key Features
- Meets 1/8 DIN Standard.
- Installs from front of panel.
- Short depth behind the panel: only 4" (102 mm) plus connectors.
- Understated 0.157" (4 mm) thick bezel.
- Meets NEMA 4X (IP-65) for high-pressure wawshdon when panel mounted.
- Screw clamps connectors meet VDE / IEC / UL / CSA safety standards.
- Rugged GE Lexan® housing material.
- Safety certified per EN 61010-1.
Dimensions

Maximum panel thickness: 4.5 mm (0.18")
Weight of base meter: 210 g (7.4 oz) typical (DPM, counter, timer, 6-digit remote display)
Weight of option boards: 30 g (1.0 oz) typical per board (analog output, relay output, communications)
Tightening Torque - Connectors: Screw terminal connectors: 5 lb-in (0.56 Nm)
Tightening Torque - Pawls: Digital Panel Meter Case Pawls: 5 lb-in (0.56 Nm)
Dimensioned CAD assembly drawings in EPRT, STEP, x_t. dwg, pdf file formats: Laureate-meter-case.zip (zipping prevents browser from opening CAD files as text files).
Panel Mounting
Slide the meter into a 45 x 92 mm 1/8 DIN panel cutout. Ensure that the provided gasket is in place between the front of the panel and the back of the meter bezel.
The meter is secured by two pawls, each held by a screw, as illustrated. Turning each screw counterclockwise extends the pawl outward from the case and behind the panel. Turning each screw clockwise further tightens it against the panel to secure the meter.
Turning each screw counterclockwise loosens the pawl and retracts it into its well. This position allows installed meter to be removed from their panel, or new meters to be installed in a panel. Do not remove the screws from their pawls. Doing so would cause the screw and pawl to fall off and likely get lost. Do not overtighten so as not to damage the plastic parts.
Time Interval Mode for Time Delay | |
---|---|
![]() |
For periodic pulses applied to A and B channels, time delays can be measured down to 0.2 µs resolution from the rising or falling edge of A to the rising or falling edge of B (selectable). |
Time Interval Mode for Pulse Width | |
![]() |
The width of periodic pulses (t1 or t2) can be measured by tying the A and B channels together. As for time delay, readings are averaged over a user-selectable gate time. |
Timing Process Dynamics with a Panel Meter and Time Interval Meter | |
![]() |
The start and stop pulses used for timing can be generated by the dual relay board in a Laureate panel meter or digital counter. For instance, the start and stop pulse edges can be created as temperature passes two alarm setpoints, or temperature cycles in a hysteresis control mode. |
Rate Based on 1 / Time | |
![]() |
The Extended stopwatch meter can be programmed to display highly accurate rate based on elapsed time. A pulse or switch closure can initiate timing, while another pulse or switch closure stops timing. The meter can be programmed with multipliers to display rate in appropriate engineering units, such as meters/sec, for any time duration. |
Replacing an Oscilloscope with a Laureate Time Interval Meter | |
![]() |
An oscilloscope is great for viewing and timing pulses in a lab. However, in fixed installations where digital timing accuracy and control outputs are required, a low-cost Laureate time interval meter will be the instrument of choice. Resolution to 0.2 µs is feasible. |
Instrumenting a Pulsed Laser System Using Laureate Counters | |
![]() |
|
Some of the many possibilities in instrumenting a pulsed laser system with Laureate dual-channel counters. |
IPC
Splashproof Cover
CLB01
RS232 Cable for Meters
CLB02
USB-to-RS232 Adapter Cable
CBL04
RS232 Cable for LT Transmitters
CLB05
USB Data Cable for Meters
CLB06
USB-to-RS485 Adapter Cable
CLB07
USB Programming & Data Cable
CLB08
RS485 Splitter Cable
BKBD
RS485 RJ11 Terminal Block Adapter
What is a Digital Panel Meter for Time Interval Measurements?
A digital panel meter for time interval measurements is a precision instrument designed to measure and display the time duration between two events, typically triggered by external signals such as pulses or switch closures. These meters are critical in industrial, laboratory, and automation applications where accurate timing of intervals is essential, such as in production cycle analysis, equipment testing, or process synchronization. By measuring time intervals with high resolution and displaying results in a clear digital format, digital panel meters ensure reliable data for process optimization, quality control, and system performance monitoring.
Unlike traditional analog timers, digital panel meters offer superior accuracy, programmable features, and integration with modern control systems. Their ability to measure time intervals from microseconds to hours makes them versatile for applications requiring precise timing, such as event duration tracking or automated process control.
Understanding the Digital Panel Meter for Time Interval Measurements
Digital panel meters for time interval measurements are typically built to the 1/8 DIN standard, fitting compactly into panel cutouts approximately 96 mm x 48 mm. This compact size ensures compatibility with control panels while optimizing space, making them ideal for industrial control rooms, test benches, or equipment with limited space.
These meters are designed to measure the time between two events, such as the start and stop pulses from sensors, switches, or other devices, using high-precision internal clocks. They feature bright LED or LCD displays, user-friendly interfaces, and communication options like Ethernet or serial interfaces for integration with automation systems. Advanced features, such as signal debouncing, programmable timing modes, and high-resolution measurement, ensure reliable performance in noisy or dynamic environments.
How Does a Digital Panel Meter for Time Interval Measurements Work?
A digital panel meter processes trigger signals to measure the time interval between events, displaying results with high precision. Below is a detailed breakdown of its operation:
- Signal Acquisition:
The meter receives two trigger signals (e.g., start and stop pulses) from external sources like switches, sensors, or relays, indicating the start and end of the time interval to be measured. - Signal Conditioning:
The input signals are conditioned through filtering or debouncing to remove noise and ensure accurate detection, critical for reliable timing in environments with electrical or mechanical interference. - Time Interval Measurement:
The meter uses a high-precision internal clock to measure the time between the start and stop signals, calculating the interval in units like microseconds, milliseconds, or seconds. - Analog-to-Digital Conversion:
A digital counter processes the timing signals into a digital format, ensuring high accuracy for both short and long intervals. - Processing and Display:
The microcontroller processes the timing data, applying calibration or scaling, and displays results on a high-resolution digital screen with customizable units (e.g., seconds, milliseconds) or decimal precision. - Output and Integration:
The meter provides outputs like relay contacts for controlling external devices, analog signals for feedback, or digital communication for integration with industrial control systems or data loggers. - Calibration and Configuration:
Users can configure the meter for specific timing modes (e.g., single-shot, cumulative), set trigger conditions, or adjust alarm thresholds, with calibration ensuring accurate timekeeping.
Key Features of Digital Panel Meters for Time Interval Measurements
Digital panel meters for time interval measurements include features that enhance performance and usability:
- High-Resolution Timing: Measures intervals from microseconds to hours with high precision, supporting detailed timing analysis.
- Flexible Triggering: Supports various trigger inputs (e.g., TTL, dry contact) for versatile applications.
- Customizable Displays: Multi-color LEDs or large-digit displays ensure readability in various lighting conditions.
- Programmable Alarms and Control: Setpoints for time intervals trigger alerts or control devices, such as stopping a process after a specific duration.
- Communication Options: Support for Ethernet or serial interfaces enables integration with industrial automation systems.
- Rugged Design: Dust- and moisture-resistant front panels ensure durability in harsh industrial environments.
Applications of Digital Panel Meters for Time Interval Measurements
Digital panel meters are widely used for time interval measurements in various applications. Key uses include:
- Production Cycle Timing:
In manufacturing, DPMs measure cycle times for processes like assembly or machining, ensuring consistent production rates. - Equipment Testing:
In testing applications, digital panel meters measure the duration of events, such as motor startup times or test cycle durations, for performance evaluation. - Process Synchronization:
In automation systems, DPMs ensure precise timing between events, such as coordinating conveyor movements or robotic actions. - Laboratory Experiments:
In research labs, digital panel meters measure time intervals for experiments, such as reaction times or material testing durations. - Maintenance Scheduling:
In industrial systems, DPMs track equipment run times or cycle durations, supporting predictive maintenance schedules.
Where Are Digital Panel Meters for Time Interval Measurements Used?
Digital panel meters are essential in industries requiring precise time interval measurements. With support for high-resolution timing and a compact design, these meters provide reliable solutions. Below are detailed use cases across key sectors:
- Industrial Manufacturing:
In production lines, digital panel meters measure cycle times for processes like welding or packaging, ensuring efficiency and quality control. For example, in an automotive plant, they track assembly cycle durations. - Scientific and Research Laboratories:
In labs, DPMs measure time intervals for experiments, such as chemical reaction durations or mechanical test cycles, providing accurate data for analysis. - Automation and Process Control:
In automated systems, digital panel meters synchronize processes by measuring time intervals between events, such as robotic movements or conveyor cycles. - Water and Wastewater Treatment:
In treatment facilities, DPMs measure dosing cycle durations, ensuring precise chemical or water treatment processes. - Energy and Power Generation:
In power plants, digital panel meters track timing for generator cycles or maintenance intervals, optimizing performance and preventing downtime. - Automotive and Aerospace Testing:
In test rigs, DPMs measure time intervals for component testing, such as engine startup times or stress test durations, ensuring compliance with standards. - Food and Beverage Processing:
In food production, digital panel meters control timing for processes like cooking or cooling cycles, ensuring consistent product quality.
Benefits of Using Digital Panel Meters for Time Interval Measurements
Digital panel meters offer numerous advantages for time interval measurements:
- High Precision: Accurate internal clocks and high-resolution timing ensure reliable measurements for short or long intervals.
- Compact Design: The small size fits seamlessly into control panels, ideal for space-constrained setups.
- Versatility: Support for various trigger inputs and programmable timing modes accommodates diverse applications.
- System Integration: Communication interfaces enable connection to automation systems, enhancing data logging and control.
- Durability: Designed to withstand industrial conditions, including dust, moisture, and temperature fluctuations.
- User-Friendly Operation: Intuitive interfaces and clear displays simplify setup and monitoring, reducing training time.
Choosing the Right Digital Panel Meter for Time Interval Measurements
When selecting a digital panel meter for time interval measurements, consider these factors:
- Timing Requirements: Ensure the meter supports the required time range (e.g., microseconds to hours) and resolution.
- Trigger Compatibility: Verify compatibility with trigger inputs (e.g., switches, sensors) for starting and stopping measurements.
- Accuracy Specifications: Check the meter’s accuracy for precise time interval measurements.
- Environmental Durability: Choose a meter with appropriate ratings for dust and moisture resistance in industrial settings.
- Output Requirements: Determine if you need relay outputs, analog signals, or digital communication for integration with other systems.
- Display and Usability: Opt for a display that’s readable in your environment and controls that are easy to configure.
Conclusion
Digital panel meters for time interval measurements are vital for precise timing in industries like manufacturing, scientific research, and automation. Their high-resolution timing, versatile trigger inputs, and compact design make them ideal for measuring event durations and controlling timed processes. By delivering reliable timing data and integrating seamlessly with control systems, digital panel meters enhance process efficiency, ensure quality, and support system performance across diverse time interval measurement applications.
Less Information.