- Description
- Quick Selector Guide
- Specifications
- Setup Software
- Mechanical
- Documents
- Applications
- Accessories

Features
- Five jumper-selectable resistance ranges of 20.000 ohm to 200.00 kohm
- Three fixed factory-special resistance ranges of 2.0000 ohm, 2.0000 Mohm, 20.000 Mohm
- Accuracy at 25°C ±0.01% of reading ± 2 counts
- 0.1 milliohm resolution on 2 ohm scale for contact resistance measurements
- 2, 3 or 4-wire connection with lead resistance compensation
- All input ranges are user selectable and factory calibrated
- Up to 60 conversions per second, Ideal for peak or valley capture
- 4-20 mA, 0-20 mA, 0-10V or -10V to +10V transmitter output, (isolated)
- Analog output resolution 0.0015% of span, accuracy ±0.02% of span
- Ethernet data I/O, Modbus TCP
- Dual 120 mA solid state relays for alarm or control (isolated)
- Power 85-264 Vac / 90-300 Vdc or 10-48 Vdc / 12-32 Vac (isolated)
- DIN rail mount housing, 22.5 mm wide, detachable screw-clamp connectors
- Operating temperature from -40°C to 70°C (-40°F to 158°F)
Optional - Extended allows up to 180 data points for custom curve linearization and a rate derived from consecutive readings.
The Laureate™ LTE Series DIN rail analog transmitter with ethernet communication and analog outputs for versatile connectivity.
The digitally programmable transmitter features two relays for alarm or control. The series offers exceptional accuracy of 0.01% of reading ± 2 counts, with high read rates at up to 60 or 50 conversions per second. The LTE Series transmitters offer the same high performance, signal conditioning, and programmable features as Laureate digital panel meters, counters, and timers.The Laureate 4-20 mA, 0-20 mA, 0-10V or -10V to +10V and ethernet output transmitter for resistance in ohms offers the same high performance, signal conditioning and programmable features as Laureate digital panel meters, counters & timers provides six voltage input ranges and four current input ranges, all factory calibrated and jumper selectable. The Resistance in Ohm transmitter is ideal for high-speed, high-accuracy resistance measurements in a production environment, such as contact resistance measurements. It is factory calibrated for five jumper selectable resistance ranges from 20.000 ohm to 200.00 kohm. Factory-special, fixed ranges of 2.0000 ohm, 2.0000 Mohm and 20.000 Mohm are also available. Accuracy is an exceptional ±0.01% of reading ± 2 counts. Resolution is one part in 20,000. In the 2 ohm range, resolution is 0.1 milliohm for contact resistance measurements.
Transmitter connections can be via 2, 3 or 4 wires. With 4-wire hookup, 2 wires are used for excitation and two separate wires are used to sense the voltage across the resistance to be measured, thereby eliminating any lead resistance effects. With 3-wire hookup, the transmitter senses the combined voltage drop across the RTD plus two excitation leads. It also senses the voltage drop across one excitation lead, and then subtracts twice this voltage from the combined total. This technique effectively subtracts the lead resistance if the excitation leads are the same.
All signal conditioner board ranges are factory-calibrated, with calibration factors for each range securely stored in an onboard EEPROM. These factors can be scaled via software to accommodate external shunts, enabling field replacement of signal conditioner boards without necessitating recalibration of the associated transmitter. For optimal accuracy, factory recalibration is recommended annually. All Laurel Electronics instruments undergo factory calibration using the industry-leading Fluke calibrators, which are recalibrated yearly and certified traceable to national standards, ensuring the highest level of precision and reliability.
The optional extended Laureate computer board enhances Laureate Transmitters by displaying rates derived from successive readings and enabling highly accurate custom curve linearization. For example, it can calculate liquid volume or flow rate in a horizontal cylindrical tank using levels from a 4-20 mA transmitter. Setup is straightforward: users input up to 180 data points into a spreadsheet or text file, and the computer calculates spline-fit segments, which are then downloaded to the transmitter for precise operation.
Laureate Transmitters are easily programmed with Laurel’s free Instrument Setup Software, downloadable from our website and compatible with Windows PCs, requiring a data interface board for setup.
High read rate of up to 50 or 60 conversions per second, the Laureate™ LTE Series transmitter uses Concurrent Slope (US Pat. 5,262,780) analog-to-digital conversion to integrate signals over a full power line cycle (50 Hz or 60 Hz). This read rate enables peak and valley capture, real-time computer interfacing, and control applications. Peak and valley values are automatically captured and can be viewed using Laurel’s free Instrument Setup Software (compatible with Windows PCs) or transmitted as serial data.
Standard Features of Laureate LTE Transmitters Include:
- Ethernet I/O, (isolated). The supported protocols are Modbus RTU and ASCII, which are tunneled via Modbus TCP. Note that RS232 or RS485 data I/O is provided by Laurel's LT Series transmitters.
- 4-20 mA, 0-20 mA or 0-10V analog transmitter output, (isolated), jumper-selectable and user scalable. All selections provide 16-bit (0.0015 ) resolution of output span and 0.02% output accuracy of a reading from -99,999 to +99,999 counts that is also transmitted digitally. Output isolation from signal and power grounds eliminates potential ground loop problems. The supply can drive 20 mA into a 500 ohm (or lower) load for 10V compliance, or 10V into a 5K ohm (or higher) load for 2 mA compliance.
- Dual solid state relays, (isolated). Available for local alarm or control. Rated 120 mA at 130 Vac or 180 Vdc.
- Selectable transducer excitation output, (isolated), user selectable 5V@100 mA, 10V@120 mA, 12V@100mA, or 24V@50 mA.
- Power 85-264 Vac, (isolated), low-voltage 10-48 Vdc or 12-32 Vac power is optional.
Digital signal filtering modes can be selected to ensure stable readings in electrically noisy environments.
- An unfiltered selection provides true peak and valley readings and aids in control applications.
- A batch average filter selection averages each 16 conversions.
- An adaptive moving average filter selection provides a choice of 8 time constants from 80 ms to 9.6 seconds. When a significant change in signal level occurs, the filter adapts by briefly switching to the shortest time to follow the change, then reverts back to its selected time constant. An auto setting selects the time constant selection based on signal noise.
Two tare functions: auto-tare and manual tare. In auto-tare, an input line is grounded by an external pushbutton. This causes the current weight, which is normally the empty weight of the container to be stored in memory as an offset. In manual tare, the tare value can be entered manually via a control input pushbutton or using Laurel's free Instrument Setup Software.
Peak and valley values are automatically captured. These may be displayed via Laurel's free Instrument Setup Software, which runs on a PC under MS Windows or can be transmitted as serial data.
LTE series DIN rail transmitters & signal conditioners can be interfaced to a wide range of sensors and transducers using one of seven available plug-in signal conditioner boards. The transmitters duplicate the high performance (high accuracy, high read rate) and extensive programmable features of Laureate 1/8 DIN digital panel meters, counters and timers. They utilize the same signal conditioners boards, much of the same firmware, and Laurel's free Windows-based Instrument Setup Software. They come in a compact DIN rail mount package with detachable screw-clamp connectors for easy wiring.
The LTE series Transmitters accessible from this page include a 4-20 mA, 0-20 mA, 0-10V, or -10V to +10V analog output (isolated, user selectable), an ethernet serial data interface (isolated, user selectable), and dual 120 mA solid state AC/DC relays (isolated). An (isolated) 5, 10, 12, or 24 Vdc transducer excitation output is included with all models other than those with a temperature or AC RMS signal conditioner.
Connecting Laureate LTE Transmitters to a Local Area Network (LAN)
Laurel LTE series Ethernet transmitters can connect directly to a LAN via an Ethernet cable. Up to 30 Laureate LT Transmitters and/or Digital Panel Meters can be configured for RS485 and daisy-chained to an LT Transmitter for seamless LAN integration. Setup for both configurations is streamlined using Laurel’s free Instrument Setup Software, which simplifies node discovery and transmitter configuration.
Flexible Communication Options for LTE Transmitters
Laureate Transmitters can be equipped with Laurel communication boards to support various interfaces and protocols. These include serial interfaces with ASCII or Modbus RTU protocols, and Ethernet interfaces with web access, ASCII, or Modbus TCP/IP protocols, ensuring versatile connectivity for your commercial applications.
LTE Transmitter Signal Input & Function | Model Series | Analog Output | Ethernet I/O | Dual Relays | |
---|---|---|---|---|---|
1 | DC Input Voltage and Current | LTE-DC | ![]() |
![]() |
![]() |
2 | AC RMS Voltage or Current | LTE-RMS | ![]() |
![]() |
![]() |
3 | Process Voltage or Current | LTE-P | ![]() |
![]() |
![]() |
4 | Strain Gauge or Potentiometer Follower | LTE-SG | ![]() |
![]() |
![]() |
5 | Weighing Applications | LTE-WA | ![]() |
![]() |
![]() |
6 | Load Cell & Microvolt Signals | LTE-WM | ![]() |
![]() |
![]() |
7 | Thermocouple (Types J, K, T, E, N, R, S) | LTE-TC | ![]() |
![]() |
![]() |
8 | RTD Temperature | LTE-RTD | ![]() |
![]() |
![]() |
9 | Resistance in Ohms | LTE-R | ![]() |
![]() |
![]() |
10 | Frequency, Rate, Speed | LTE-FR | ![]() |
![]() |
![]() |
11 | Pulse Input Totalizer | LTE-FR | ![]() |
![]() |
![]() |
12 | Process Signal Totalizer | LTE-VF | ![]() |
![]() |
![]() |
13 | Batch Controller Analog Input | LTE-FR | ![]() |
![]() |
![]() |
14 | Batch Controller Pulse Input | LTE-FR | ![]() |
![]() |
![]() |
15 | Sum, Difference, Ratio, Product of 2 Inputs | LTE-FR | ![]() |
![]() |
![]() |
16 | On/Off Duty Cycle | LTE-FR | ![]() |
![]() |
![]() |
17 | Stopwatch Timing for Single Events | LTE-FR | ![]() |
![]() |
![]() |
18 | Average Time of Periodic Events | LTE-FR | ![]() |
![]() |
![]() |
19 | AC Phase Angle and Power Factor | LTE-FR | ![]() |
![]() |
![]() |
20 | Quadrature Position or Rate | LTE-QD | ![]() |
![]() |
![]() |
Range | Ohms | Resolution | Accuracy | Excitation Current *** |
---|---|---|---|---|
R0** | 0-2.0000 Ω | 0.1 mΩ | ±0.01% of reading ± 2 counts |
5 mA |
R1* | 0-20.000 Ω | 1 mΩ | 5 mA | |
R2* | 0-200.00 Ω | 10 mΩ | 500 µA | |
R3* | 0-2000.0 Ω | 100 mΩ | 50 µA | |
R4* | 0-20000 Ω | 1 Ω | 5 µA | |
R5* | 0-200.00 kΩ | 10 Ω | 500 nA | |
R6** | 0-2.0000 MΩ | 100 Ω | 500 nA | |
R7** | 0-20.0000 MΩ | 1000 Ω | 80 nA |
* | Jumper-selectable, precalibrated range. |
** | Factory-set fixed range. |
*** | The applied excitation current is sensed by the meter, which operates in a ratiometric mode and automatically compensates for any changes in excitation. |
Signal Input | ||||
---|---|---|---|---|
Input Resolution | 16 bits (65,536 steps) | |||
Input Accuracy | ±0.01% of reading ± 2 counts | |||
Update Rate, Max | 50/sec at 50 Hz, 60/sec at 60 Hz | |||
Analog Output (standard) | ||||
Output Levels | 0-20 mA or 0-10 Vdc (selectable) | |||
Compliance, 4-20 mA | 10V (0-500Ω load ) | |||
Compliance, 0-10V | 2 mA (5 kΩ load) | |||
Output Resolution | 16 bits (65,536 steps) | |||
Output Accuracy | 0.02% of output span plus conversion accuracy | |||
Output Isolation | 250V rms working, 2.3 kV rms per 1 minute test | |||
Ethernet Data I/O (standard) | ||||
Type | 10/100 Base-T Ethernet per IEEE 802.3 | |||
Data Rates | 300, 600, 1200, 2400, 4800, 9600, 19200 baud | |||
Output Isolation | 250V rms working, 2.3 kV rms per 1 min test | |||
Serial Protocol | Modbus TCP | |||
Modbus Compliance | Modbus over Serial Line Specification V1.0 (2002) | |||
Digital Addresses | 247 | |||
Dual Relay Output (standard) | ||||
Relay Type | Two solid state relays, SPST, normally open, Form A | |||
Load Rating | 120 mA at 140 Vac or 180 Vdc | |||
Power Input | ||||
Standard Power | 85-264 Vac or 90-300 Vdc | |||
Low Power Option | 10-48 Vdc or 12-32 Vac | |||
Power Frequency | DC or 47-63 Hz | |||
Power Isolation | 250V rms working, 2.3 kV rms per 1 min test | |||
Power Consumption | 2.5W typical at 24V | |||
Environmental | ||||
Operating Temperature | -40°C to 70°C (-40°F to 158°F) | |||
Storage Temperature | -40°C to 85°C (-40°F to 185°F) | |||
Relative Humidity | 95% at 40°C, non-condensing | |||
Cooling Required | Mount transmitters with ventilation holes at top and bottom. Leave 6 mm (1/4") between transmitters, or force air with a fan. | |||
Mechanical | ||||
Dimensions | 129 x 104 x 22.5 mm case | |||
Mounting | 35 mm rail per DIN EN 50022 | |||
Electrical Connections | Plug-in screw-clamp connectors | |||
General | ||||
Programming | Utilize Laurel's free Instrument Setup Software, which runs on a PC under MS Windows. | |||
Security | Lockout options available using Laurel's free Instrument Setup Software. | |||
Warranty | 3 years parts & labor | |||
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. |
Transmitter Pinout

Resistance Measurement with Excitation & Lead Compensation
Ohm transmitter hookup can be via 2, 3 or 4 wires to the J5 connector. The transmitter applies a fixed excitation current for each resistance range. | |
![]() |
In 4-wire hookup, different pairs of leads are used to apply the excitation current and sense the voltage drop across the unknown resistance, so that the IR drop across the excitation leads is not a factor. |
![]() |
In 3-wire hookup, the transmitter senses the combined voltage drop across the unknown resistance plus two excitation leads. It also senses the voltage drop across one excitation lead, and then subtracts twice this voltage from the combined total. This technique effectively subtracts all lead resistance and compensates for ambient temperature changes if the two excitation leads are identical. |
![]() |
In 2-wire hookup, the transmitter senses the combined voltage drop across the unknown resistance and both lead wires. The voltage drop across the lead wires can be measured by shorting out the resistance during transmitter setup, and this voltage is then automatically subtracted from the combined total. However, changing resistance of the lead wires due to ambient temperature changes will not be compensated. |
Free Instrument Setup Software for Series 2 Laureates
Free Downloadable Windows-based Instrument Setup (IS) software (Data Interface Board Required) for use with our programmable Digital Panel Meters, Scale Meters, Counters, Timers, Remote Displays, and Transmitters, are an easy method to set up Laureate 1/8 DIN digital panel meters, counters, timers, remote displays, and DIN-rail transmitters, as explained in the Instrument Setup Software Manual. Laureate 1/8 DIN instruments can also be set up from the front panel, as explained in their respective Owners Manuals. Instrument Setup software is of benefit whether or not the PC is connected to the instrument.
- When the PC is connected to the instrument, Instrument Setup software can retrieve the setup file from the instrument or open a default setup file or previously saved setup file from disk View Setup, then provides graphical user interface (GUI) screens with pull-down menus applicable to input, display, scaling, filtering, alarms, communications, analog output, and front panel lockouts. Fields that are not applicable to the instrument as configured are either left out or grayed out. Clicking on any item will bring up a detailed Help screen for that item. After editing, the setup file can be downloaded, uploaded to the instrument, or saved to a disk. The same setup file can then be downloaded into multiple instruments.
- When the PC is not connected to the instrument, the above GUI screens can be used to set up a virtual instrument. The setup file can then be saved to disk. Switching toView Menu then brings up a screen with the required front panel programming steps. This view can be printed out for use at the instrument site and to serve as a hard copy record.
Download Free Instrument Setup Software
Installation
Set User Account Control (UAC) of MS Windows to "Never notifiy me" so that Instrument Setup Software can create directories. The UAC change screen can be reached as follows:
- Under Windows 7, click on the Windows Start button in the lower left of the desktop and enter "UAC" in the search field.
- Under Windows 8, navigate to Control Panel, then to the "User Accounts and Family Safety" section, and click on "Change User Account Control Settings."
- Under Windows 10, click on the Windows Start button in the lower left of the desktop, then on "Settings", and enter "UAC" in the search field.
- Reboot your computer for the changed UAC setting to take effect.

RJ11-to-DB9 cable with rear view of DB9 connector to PC

RS232 cable, meter to PC, P/N CBL01
Laureate 1/8 DIN Laureate instruments must be equipped with a serial communications board and be connected to the computer via a serial communications cable. The connection can be via RS232, RS485, USB or Ethernet. Following setup, the serial communications board may be removed from the instrument if desired. The wiring of the RS232 cable is illustrated above with end views of the two connectors.
Laureate LT Series transmitters come standard with a 3-wire serial interface, which can be jumpered for RS232 or RS485.
Laureate LTE Series transmitters come standard with an Ethernet interface.
Meter Setup Screens
Click on any of the reduced screens below for a full-size screen view, then click on the Back button of your browser to return to this page. The screens examples below are for a fully-loaded Series 2 Digital Panel Meter (DPM), which is connected to the PC via RS232. If the meter is a Series 1 meter (pre-2007), this is sensed by the software, and somewhat different screens are brought up. Please see Series 1 setup screens.











Meter Setup Utilities




From the Main Menu, click on Readings if your PC is connected to the meter. A pull-down menu then offers three choices: List, Plot and Graph.
- List presents the latest readings in a 20-row by 10-column table. Press Pause at any time to freeze the display. This is one method to capture peak readings.
- Plot generates a plot of readings vs. time in seconds. It effectively turns the DPM-PC combination into a printing digital oscilloscope.
- Graph generates a histogram where the horizontal axis is the reading and the vertical axis is the number of occurrences of readings. The display continually resizes itself as the number of readings increases.


Dimensions

Dimensioned CAD assembly drawings in EPRT, STEP, x_t, .dwg, pdf file formats: Laureate-transmitter-case.zip (zipping prevents browser from opening CAD files as text files).
QA Application with Relays in Passband Mode
![]() |
A deviation limit (50 mΩ in this example) is set up around both sides of a setpoint. The relay closes (or opens) when the reading falls within the deviation band, and opens (or closes) when the reading falls outside of this band. This mode sets up a passband around the setpoint and can be used for contact resistance testing in a production environment. |
CLB02
USB-to-RS232 Adapter Cable
CBL04
RS232 Cable for LT Transmitters
What is an LTE DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs for Resistance in Ohms?
In modern industrial settings, precision and reliability in monitoring and control systems are paramount. The LTE Series DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs for Resistance in Ohms is an advanced device designed to meet these demands. Here’s an overview of what this sophisticated instrument is and how it can enhance industrial operations.
Understanding the LTE Series DIN Rail Analog Transmitter
The LTE Series DIN Rail Analog Transmitter is a robust and versatile device used in various applications where measuring and converting resistance values into a standard electrical signal is crucial. This transmitter is designed to be mounted on a DIN rail, a standard mounting system used in industrial equipment.
Key Features and Functions:
-
Analog Transmitter: The LTE Series converts resistance values into a proportional analog signal. This is essential for interfacing with other control systems and monitoring equipment that requires a standard signal format.
-
Resistance Measurement: Specifically designed to measure resistance in ohms, this transmitter can handle various resistive sensors such as thermistors, RTDs, or other resistance-based sensors. This makes it versatile for different measurement needs.
-
DIN Rail Mounting: The device is built to be mounted on a DIN rail, a standardized metal rail used for mounting industrial control equipment. This allows for easy installation and integration into existing control panels or distribution systems.
-
Ethernet Communication: One of the standout features of the LTE Series is its Ethernet communication capability. This enables the device to be connected to a network, allowing for remote monitoring and configuration. Ethernet connectivity facilitates data integration into networked systems and improves accessibility for real-time data analysis and control.
-
Analog Outputs: In addition to Ethernet communication, the transmitter provides analog outputs. These outputs are usually in the form of voltage or current signals, which can be used to interface with other devices or systems that require analog input. This feature is crucial for applications where analog signal processing is needed.
Applications and Benefits
The LTE Series DIN Rail Analog Transmitter is used in various industrial and commercial applications where accurate resistance measurement is required. Typical applications include:
-
Temperature Monitoring: When paired with RTDs or thermistors, the transmitter can be used to monitor temperature in industrial processes or environments. The resistance values from these sensors are converted into analog signals that can be used to track temperature changes.
-
Process Control: In manufacturing and process control environments, accurate resistance measurement is critical for maintaining process parameters. The analog outputs can be integrated into control systems to ensure processes operate within desired parameters.
-
Remote Monitoring: With Ethernet communication, users can access data remotely, making it easier to monitor systems from different locations. This feature enhances operational efficiency and allows for timely interventions when needed.
Conclusion
The LTE Series DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs for Resistance in Ohms represents a sophisticated solution for precise resistance measurement and signal conversion. Its combination of analog outputs and Ethernet communication capabilities makes it a valuable asset in industrial and commercial settings, offering flexibility, accuracy, and enhanced monitoring capabilities. Whether for temperature monitoring, process control, or remote data access, this transmitter is designed to meet the demands of modern industrial applications.
Where is an LTE DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs for Resistance in Ohms Used?
The LTE DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs is a versatile and crucial component. Designed for high-precision applications, this transmitter specializes in converting resistance measurements into usable analog signals and digital communications. Here’s an in-depth look at where and how this technology is used:
1. Industrial Process Control
In industrial settings, precise control and monitoring of processes are essential for maintaining efficiency and safety. The LTE Series transmitter is commonly employed to measure the resistance of various sensors and components, such as temperature sensors (RTDs), which are vital in maintaining the optimal operating conditions. By converting the resistance readings into analog signals and transmitting them over Ethernet, operators can integrate these measurements into their process control systems for real-time monitoring and adjustments.
2. Building Management Systems (BMS)
Modern building management systems rely on accurate environmental data to regulate heating, ventilation, and air conditioning (HVAC) systems, lighting, and other critical functions. The LTE Series transmitter plays a key role in these systems by providing resistance-based sensor data, such as that from temperature or humidity sensors. Its ability to communicate over Ethernet allows for seamless integration into BMS networks, facilitating remote monitoring and control.
3. Energy Management and Monitoring
In energy management applications, monitoring the performance of equipment and energy consumption is crucial for optimizing efficiency and reducing costs. The LTE Series transmitter helps in this regard by converting resistance measurements from sensors monitoring electrical components or other equipment into actionable data. The Ethernet communication capability enables integration into energy management systems, allowing for centralized monitoring and analysis.
4. Manufacturing and Automation
In manufacturing environments, where precision and reliability are paramount, the LTE Series transmitter is used to ensure that machinery and processes operate within specified parameters. By measuring resistance from various sensors within the manufacturing equipment and converting this data into analog signals, the transmitter provides critical information for automation systems. Ethernet communication allows for real-time data collection and integration into broader control systems, enhancing operational efficiency.
5. Environmental Monitoring
Environmental monitoring systems, which track variables such as temperature, humidity, and pressure, often utilize sensors that produce resistance-based outputs. The LTE Series transmitter is used to convert these resistance measurements into analog signals and transmit them over Ethernet. This capability is vital for systems that require accurate and continuous monitoring of environmental conditions, such as those in research facilities, laboratories, or outdoor installations.
6. Research and Development
In R&D settings, where experiments and prototypes are developed, precise measurement and data acquisition are essential. The LTE Series transmitter supports these activities by providing accurate resistance measurements and enabling data transmission through Ethernet. This integration allows researchers to collect and analyze data efficiently, aiding in the development and validation of new technologies and processes.
Conclusion
The LTE DIN Rail Analog Transmitter with Ethernet Communication and Analog Outputs is a versatile tool used across various industries for its ability to convert resistance measurements into actionable data. Its applications range from industrial process control and building management to energy monitoring, manufacturing, environmental monitoring, and research. By providing accurate data and seamless communication, this transmitter enhances the efficiency and effectiveness of numerous systems and processes.
Less Information.