- Description
- Specifications
- Setup Software
- Mechanical
- Documents
- Applications
- Technical FAQ
- Accessories
Features
- Provides automatic control for repetitive liquid fill operations
- Available for turbine flow meter pulse signals from 0 Hz to 1 MHz or analog flow meter signals (4-20 mA, 0-1 mA or 0-10V)
- 6-digit scalable display to ±999,999 for batch total, grand total, number of batches, or flow rate
- Counts up from 0 to preset or down from preset to 0
- Two or four control relays for with settable delay between cycles
- All input ranges are user selectable and factory calibrated
- Digital span adjustment: 0 to ±999,999; zero adjustment: -999,999 to +999,999
- Front panel scalable: 0 to ±999,999 for use with current shunts
- 1/8 DIN size with bright red or green 0.56" (14.2mm), high LED digits
- Transducer excitation output, 5, 10, 12, or 24 Vdc (isolated)
- Power 85-264 Vac / 90-300 Vdc or 10-48 Vdc / 12-32 Vac (isolated)
- Operating temperature from -40°C to 70°C (-40°F to 158°F)
- Wide choice of Plug-in-Play options:
- 2 or 4 relays, mechanical or solid state, for alarm or control (isolated)
- 1 or 2 Analog output, 4-20 mA, 0-20 mA, 0-10V, or -10V to +10V (isolated)
- Communications: Ethernet, WiFi, USB, RS232, RS485 (isolated)
The Laureate™ 1/8 DIN Panel Meters batch controller
is a low cost, powerful and highly accurate batching controller for repetitive fill operations. It can use the Laureate V-to-F analog signal conditioner for use with 4-20 mA, 0-1 mA or 0-10V conditioned flow meter signals. Relay control can be provided by two or four 8A contact relays, or by two or four 120 mA AC/DC solid state relays. Fill operations are repeated continually with a programmable delay from 10 ms to 199.99 sec, or based on an external control input.Three items are tracked by the batch control software. These can each be scaled to engineering units of total or flow rate and displayed by the controller's six-digit LED display: Item #1 is the current batch total, which can be set up to count up from zero to a preset limit, or down from a preset limit to zero. Item #2 can be assigned to grand total or number of batches. Item #3 is the flow rate.
Laureate Panel Meters are easily programmed with Laurel’s free Instrument Setup Software, downloadable from our website and compatible with Windows PCs, requiring a data interface board for setup.
All signal conditioner board ranges are factory-calibrated, with calibration factors for each range securely stored in an onboard EEPROM. These factors can be scaled via software to accommodate external shunts, enabling field replacement of signal conditioner boards without necessitating recalibration of the associated panel meters. For optimal accuracy, factory recalibration is recommended annually. All Laurel Electronics instruments undergo factory calibration using the industry-leading Fluke calibrators, which are recalibrated yearly and certified traceable to national standards, ensuring the highest level of precision and reliability.
Two or four relays can be used. Relay #1 is assigned to batch total to control the filling operation. Relays #2, #3 and #4 can each be assigned by the user to Items #1, #2 or #3. For example, Relay #2 can be assigned to Item #1 (batch total) with a lower setpoint to serve as a pre-warn and slow down the fill rate near the batch setpoint, and Relay #3 can be assigned to the total number of batches to terminate the batching when a present number of bottles have been filled.
An optional serial communications board allows the batch controller to transmit Items #1, #2 and #3, as well as peak for item #3 (rate). If required, all four items can be displayed simultaneously by augmenting the batch controller with up to three Laureate remote displays. Each of these can have its own analog output and relays for alarm or control.
Batch Control with Conditioned Flow Signals
The analog input batch controller utilizes the Laureate VF voltage-to-frequency converter signal conditioner board, which converts 4-20 mA, 0-1 mA or 0-1V conditioned flow meter signals to a frequency from 10 kHz to 110 kHz. This allows the counter controller to totalize flow, to count up to a preset value, or to count down to zero from a preset value for batch control. One of the relays is dedicated to On/Off batch control, while the other relay is available to slow down rate near the setpoint or to provide another alarm or control function based on rate or total.
- An unfiltered selection provides true peak and valley readings and aids in control applications.
- A batch average filter selection averages each 16 conversions.
- An adaptive moving average filter selection provides a choice of 8 time constants from 80 ms to 9.6 seconds. When a significant change in signal level occurs, the filter adapts by briefly switching to the shortest time to follow the change, then reverts back to its selected time constant. An Auto setting selects the time constant selection based on signal noise.
Peak and valley values are automatically captured. These may be displayed via a front panel pushbutton command or control signal at the rear connector, or be transmitted as serial data.
Two rear panel control Inputs (CMOS/TTL levels, logic 0 = tied to digital ground, logic 1 = open) or dry contacts that can be set to control / activate 14 meter commands.
An (isolated) 5, 10, 12, or 24 Vdc excitation output is standard to power transducers or two-wire transmitters. Ratiometric operation, which automatically compensates for changes in the applied excitation, is jumper selectable for applications, such as bridges, where the signal to be measured is proportional to the excitation level.
Display | |
---|---|
Readout | 6 LED digits, 7-segment, 14.2 mm (.56"), red or green |
Display Range | -999,999 to +999,999, XXXXEX scientific notation beyond 999,999 |
Zero Adjust | -999,999 to +999,999 |
Span Adjust | 0 to ±999,999 |
Indicators | Four LED lamps |
Analog Input (V-to-F signal conditioner) | |
Signal Types | 0-1 mA, 4-20 mA, 0-10V |
Conversion Technique | Inverse period applied to 10 kHz- 110 kHz |
Update Rate | 50 ms (max) |
Gate Time | Selectable 10 ms to 199.99 s |
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. | |
Power Supply Boards (one required) | |
Voltage, standard | 85-264 Vac or 90-300 Vdc |
Voltage, optional | 12-32 Vac or 10-48 Vdc |
Frequency | DC or 47-63 Hz |
Power consumption | 1.2W @ 120 Vac, 1.5W @ 240 Vac, 1.3W @ 10 Vdc, 1.4W @ 20 Vdc, |
(typical, base meter) | 1.55W @ 30 Vdc, 1.8W @ 40 Vdc, 2.15W @ 48 Vdc |
Power Isolation | 250V rms working, 2.3 kV rms per 1 min test |
Excitation Output (standard) | |
5 Vdc | 5 Vdc ± 5%, 100 mA (jumper selectable) |
10 Vdc | 10 Vdc ± 5%, 120 mA (jumper selectable) |
12 Vdc | 12 Vdc ± 5%, 100 mA (jumper selectable) |
24 Vdc | 24 Vdc ± 5%, 50 mA (jumper selectable) |
Output Isolation | 50 Vdc from signal ground |
Analog Output Boards (one optional) | |
Output Levels | 4-20 mA, 0-20 mA, 0-10V, -10 to +10V (single-output option) |
Current compliance | 4-20 mA, 0-20 mA, 0-10V (dual-output option) |
Voltage compliance | 2 mA at 10V ( > 5 kΩ load) |
Scaling | 12V at 20 mA ( < 600 Ω load) |
Resolution | Zero and full scale adjustable from -99999 to +99999 16 bits (0.0015% of full scale) |
Isolation | 250V rms working, 2.3 kV rms per 1 min test (dual analog outputs share the same ground) |
Relay Output Boards (one required for batch control) | |
Dual magnetic relays | 2 Form C, 10A max, 440Vac or 125Vdc max, 2500VA or 300W |
Quad magnetic relays | 4 Form A (NO), 10A max, 440Vac or 125Vdc max, 2500VA or 300W |
Dual solid state relays | 2 Form A (NO), AC or DC, 0V - 400V, 120Ma, 35Ohms (max at On-State) |
Quad solid state relays | 4 Form A (NO), AC or DC, 0V - 400V, 120Ma, 35Ohms (max at On-State) |
Relay commons | Isolated commons for dual relays or each pair of quad relays |
Relay isolation | 250V rms working, 2.3 kV rms per 1 minute test |
Relay latching modes | Latching or non-latching |
Relay active modes | Active on or off, active high or low |
Hysteresis modes | QA passband mode, split hysteresis, span hysteresis |
Communication Boards (one optional) | |
Board Selections | RS232, RS485 with dual RJ11 connectors, RS485 with dual RJ45 connectors, USB, High-Speed Ethernet, USB-to-RS485 gateway, High-Speed Ethernet-to-RS485 gateway, WiFi with built-in antenna plus USB & RS485, WiFi with external antenna plus USB & RS485 |
Protocols | Laurel Custom ASCII (serial), Modbus RTU (serial), Modbus TCP (Ethernet or WiFi) |
Digital Addresses | 247 (Modbus), 31 (Laurel ASCII), |
Isolation | 250V rms working, 2.3 kV rms per 1 min test |
Environmental | |
Operating Temperature | -40°C to 70°C (-40°F to 158°F) |
Storage Temperature | -40°C to 85°C (-40°F to 185°F) |
Relative Humidity | 95% at 40°C, non-condensing |
Protection | NEMA-4X (IP-65) when panel mounted |
Signal Connections | |
![]() |
|
Mechanical | |
Enclosure | 1/8 DIN, high impact plastic, UL 94V-0, color: black |
Mounting | 1/8 DIN panel cutout required: 3.622" x 1.772" (92 mm x 45 mm). |
Dimensions | 4.68" x 2.45" x 5.64" (119 mm x 62 mm x 143 mm) (W x H x D) |
Maximum panel thickness | 4.5 mm (0.18") |
Tightening Torque - Connectors | Screw terminal connectors: 5 lb-in (0.56 Nm) |
Tightening Torque - Pawls | Digital Panel Meter Case Pawls: 5 lb-in (0.56 Nm) |
Weight of base meter | 210 g (7.4 oz) typical (DPM, counter, timer, 6-digit remote display) |
Weight of option boards | 30 g (1.0 oz) typical per board (analog output, relay output, communications) |
General | |
Programming Methods | Four front panel buttons or via Laurel's free Instrument Setup Software, which runs on a PC under MS Windows. |
Security | Lockout options include using the front panel buttons, the free Instrument Setup Software, or a hardware jumper. |
Warranty | 3 years parts & labor |
Recalibration: All ranges are calibrated at the factory. Recalibration is recommended every 12 months. |
Free Instrument Setup Software for Series 2 Laureates
Free Downloadable Windows-based Instrument Setup (IS) software (Data Interface Board Required) for use with our programmable Digital Panel Meters, Scale Meters, Counters, Timers, Remote Displays, and Transmitters, are an easy method to set up Laureate 1/8 DIN digital panel meters, counters, timers, remote displays, and DIN-rail transmitters, as explained in the Instrument Setup Software Manual. Laureate 1/8 DIN instruments can also be set up from the front panel, as explained in their respective Owners Manuals. Instrument Setup software is of benefit whether or not the PC is connected to the instrument.
- When the PC is connected to the instrument, Instrument Setup software can retrieve the setup file from the instrument or open a default setup file or previously saved setup file from disk View Setup, then provides graphical user interface (GUI) screens with pull-down menus applicable to input, display, scaling, filtering, alarms, communications, analog output, and front panel lockouts. Fields that are not applicable to the instrument as configured are either left out or grayed out. Clicking on any item will bring up a detailed Help screen for that item. After editing, the setup file can be downloaded, uploaded to the instrument, or saved to a disk. The same setup file can then be downloaded into multiple instruments.
- When the PC is not connected to the instrument, the above GUI screens can be used to set up a virtual instrument. The setup file can then be saved to disk. Switching toView Menu then brings up a screen with the required front panel programming steps. This view can be printed out for use at the instrument site and to serve as a hard copy record.
Download Free Instrument Setup Software
Installation
Set User Account Control (UAC) of MS Windows to "Never notifiy me" so that Instrument Setup Software can create directories. The UAC change screen can be reached as follows:
- Under Windows 7, click on the Windows Start button in the lower left of the desktop and enter "UAC" in the search field.
- Under Windows 8, navigate to Control Panel, then to the "User Accounts and Family Safety" section, and click on "Change User Account Control Settings."
- Under Windows 10, click on the Windows Start button in the lower left of the desktop, then on "Settings", and enter "UAC" in the search field.
- Reboot your computer for the changed UAC setting to take effect.

RJ11-to-DB9 cable with rear view of DB9 connector to PC

RS232 cable, meter to PC, P/N CBL01
Laureate 1/8 DIN Laureate instruments must be equipped with a serial communications board and be connected to the computer via a serial communications cable. The connection can be via RS232, RS485, USB or Ethernet. Following setup, the serial communications board may be removed from the instrument if desired. The wiring of the RS232 cable is illustrated above with end views of the two connectors.
Laureate LT Series transmitters come standard with a 3-wire serial interface, which can be jumpered for RS232 or RS485.
Laureate LTE Series transmitters come standard with an Ethernet interface.
Meter Setup Screens
Click on any of the reduced screens below for a full-size screen view, then click on the Back button of your browser to return to this page. The screens examples below are for a fully-loaded Series 2 Digital Panel Meter (DPM), which is connected to the PC via RS232. If the meter is a Series 1 meter (pre-2007), this is sensed by the software, and somewhat different screens are brought up. Please see Series 1 setup screens.











Meter Setup Utilities




From the Main Menu, click on Readings if your PC is connected to the meter. A pull-down menu then offers three choices: List, Plot and Graph.
- List presents the latest readings in a 20-row by 10-column table. Press Pause at any time to freeze the display. This is one method to capture peak readings.
- Plot generates a plot of readings vs. time in seconds. It effectively turns the DPM-PC combination into a printing digital oscilloscope.
- Graph generates a histogram where the horizontal axis is the reading and the vertical axis is the number of occurrences of readings. The display continually resizes itself as the number of readings increases.


Laureate™ 1/8 DIN Case For Laureate Digital Panel Meters, Counters, Timers & Remote Displays

Key Features
- Meets 1/8 DIN Standard.
- Installs from front of panel.
- Short depth behind the panel: only 4" (102 mm) plus connectors.
- Understated 0.157" (4 mm) thick bezel.
- Meets NEMA 4X (IP-65) for high-pressure wawshdon when panel mounted.
- Screw clamps connectors meet VDE / IEC / UL / CSA safety standards.
- Rugged GE Lexan® housing material.
- Safety certified per EN 61010-1.
Dimensions

Maximum panel thickness: 4.5 mm (0.18")
Weight of base meter: 210 g (7.4 oz) typical (DPM, counter, timer, 6-digit remote display)
Weight of option boards: 30 g (1.0 oz) typical per board (analog output, relay output, communications)
Tightening Torque - Connectors: Screw terminal connectors: 5 lb-in (0.56 Nm)
Tightening Torque - Pawls: Digital Panel Meter Case Pawls: 5 lb-in (0.56 Nm)
Dimensioned CAD assembly drawings in EPRT, STEP, x_t. dwg, pdf file formats: Laureate-meter-case.zip (zipping prevents browser from opening CAD files as text files).
Panel Mounting
Slide the meter into a 45 x 92 mm 1/8 DIN panel cutout. Ensure that the provided gasket is in place between the front of the panel and the back of the meter bezel.
The meter is secured by two pawls, each held by a screw, as illustrated. Turning each screw counterclockwise extends the pawl outward from the case and behind the panel. Turning each screw clockwise further tightens it against the panel to secure the meter.
Turning each screw counterclockwise loosens the pawl and retracts it into its well. This position allows installed meter to be removed from their panel, or new meters to be installed in a panel. Do not remove the screws from their pawls. Doing so would cause the screw and pawl to fall off and likely get lost. Do not overtighten so as not to damage the plastic parts.
Drum Filling Application Utilizing Two Relay Outputs | |
---|---|
![]() |
In this drum filling application, the Laureate pulse-input batch controller utilizes uses its two relays to control a pump. The Prewarn relay slows down the pump near the preset to avoid overshoot. The Batch relay stops the pump at the preset. |
Controlling Chemical Mixing of Materials | |
![]() |
Multiple Laureate batch controllers can be used in combination to control the mixing of materials in the proper ratio. Each feed line is equipped with its own pump, flowmeter, and Laureate. Controller setup and monitoring of the mixing operation are facilitated by optional serial communications. RS485 allows a single data line to handle multiple controllers. |
Up-Counting Batch Control | |
![]() |
In up-counting batch control, the Laureate counts up from zero to a preset maximum. A prewarn level is available to slow down filling near the preset to avoid overshoot. A time delay can be programmed from the end of each batch to the start of the next batch. |
Down-Counting Batch Control | |
![]() |
In down-counting batch control, the Laureate counts down from the preset maximum to zero. A prewarn level is available to slow down filling or emptying near zero. Again, a time delay can be programmed from the end of each batch to the start of the next batch. |
Discrete Filling and Batch Counting | |
![]() |
The Laureate batch controller is ideal for discrete manufacturing as well as repetitive fill operations. In this example, the Laureate counts bottles which it then groups into sixpacks. Its Grand Total capability can be used to track bottles or sixpacks. |
Batch Controller Digital Panel Meter Frequently Asked Technical Questions
IPC
Splashproof Cover
CBL01
RS232 Cable for Meters
CBL02
USB-to-RS232 Adapter Cable
CBL04
RS232 Cable for LT Transmitters
CBL05
USB Data Cable for Meters
CBL06
USB-to-RS485 Adapter Cable
CBL07
USB Programming & Data Cable
CBL08
RS485 Splitter Cable
BKBD
RS485 RJ11 Terminal Block Adapter
Modular Design for Maximum Flexibility at Minimum Cost
All boards are isolated from meter and power grounds. Optional Plug-in-Play boards for communications and control include Ethernet, WiFi, serial communication boards, dual or quad relay boards, and an analog output board. Laureates may be powered from 85-264 Vac or optionally from 12-32 Vac or 10-48 Vdc. The display is available with bright red or green 0.56" (14.2mm) high LED digits. The 1/8 DIN case meets NEMA 4X (IP65) specifications from the front when panel mounted. Any setup functions and front panel keys can be locked out for simplified usage and security. A built-in 5, 10, 12, or 24 Vdc excitation supply can power transducers, eliminating the need for an external power supply. All power and signal connections are via UL / VDE / CSA rated screw clamp plugs.
The Laureate™ Series features modular design with up to 7 isolated plug-in boards, applicable to all Laureate 1/8 DIN Panel Meters.
Modular Hardware
The design of the Laureate™ Series is modular for maximum flexibility at minimum cost. All boards are isolated from meter and power grounds. The base configuration for panel meters or counter consists of a main module (with computer and plug-in display boards), a power supply board, and a signal conditioner board. Optional plug-in-play boards include an isolated setpoint controller board, an isolated analog output board, and an isolated digital interface board. Modular design and a choice of plug-in options allow the Laureate to be customized for a broad range of applications from simple monitoring to control and computer interface. There can be up to five plug-in boards in a 1/8 DIN Laureate.

Connecting Laureate Panel Meters to a Local Area Network (LAN)
Up to 30 Laureate Panel Meters and/or LT Transmitters can be configured for RS485 and daisy-chained to an LT Transmitter using Laurel’s High Speed Ethernet-to-RS485 converter board for seamless LAN integration. Alternatively, Laurel LTE series Ethernet transmitters can connect directly to a LAN via an Ethernet cable. Setup for both configurations is streamlined using Laurel’s free Instrument Setup Software, which simplifies node discovery and transmitter configuration.
Flexible Communication Options for Panel Meters
Laureate Panel Meters can be equipped with Laurel communication boards to support various interfaces and protocols. These include serial interfaces with ASCII or Modbus RTU protocols, and Ethernet interfaces with web access, ASCII, or Modbus TCP/IP protocols, ensuring versatile connectivity for your commercial applications.
Understanding 1/8 DIN Panel Meters for Batch Controller Analog Input
Introduction
In industrial settings, precise measurement and control of processes are essential for ensuring efficiency, safety, and quality. 1/8 DIN Panel Meters are critical instruments in these environments, particularly when designed for batch control applications with analog inputs. These Panel Meters provide accurate monitoring and control of process variables, enabling precise management of batch processes. This section explores the functionality, features, technical specifications, and applications of 1/8 DIN Panel Meters for batch controller analog input.
What are 1/8 DIN Panel Meters?
1/8 DIN Panel Meters are electronic instruments used to display, measure, and control process variables such as temperature, pressure, flow, or current. The "1/8 DIN" designation refers to their standardized size, defined by the Deutsches Institut für Normung (DIN), the German Institute for Standardization. These Panel Meters typically measure approximately 96mm x 48mm (3.78 x 1.89 inches), making them compact and ideal for integration into control panels with limited space. Equipped with high-visibility digital displays, usually LED or LCD, these Panel Meters provide real-time data for operators to monitor and manage processes effectively.
Role in Batch Control
Batch control involves managing production in discrete steps or "batches," ensuring precise quantities of materials are processed or dispensed. This is critical in industries like pharmaceuticals, food and beverage, and chemical processing, where accuracy and consistency are paramount. 1/8 DIN Panel Meters for batch control serve several key functions:
-
Monitoring Process Variables: These Panel Meters continuously monitor critical parameters like flow rate, temperature, or pressure, ensuring each batch meets required specifications.
-
Triggering Control Actions: They can be programmed to initiate actions, such as opening/closing valves or starting/stopping pumps, when predefined conditions are met, automating batch processes.
-
Data Logging: Advanced models include data logging capabilities, enabling operators to track process variables over time for quality control and regulatory compliance.
Analog Input in Panel Meters
The analog input functionality allows these Panel Meters to interface with a wide range of sensors and transducers that convert physical parameters into electrical signals, typically voltage (e.g., 0-10V) or current (e.g., 4-20mA). The process involves:
-
Sensor/Transducer Output: Sensors measure physical parameters and output an analog signal proportional to the measured value.
-
Analog Input: The Panel Meters receive the analog signal through their input terminals.
-
Signal Conversion: An internal Analog-to-Digital Converter (ADC) transforms the analog signal into a digital value for display.
-
Control and Output: Based on the input, the Panel Meters can trigger control actions or alarms and provide output signals to other devices in the control loop.
Advantages of Using 1/8 DIN Panel Meters
- Compact Size: The 1/8 DIN size optimizes space in control panels, making these Panel Meters ideal for compact installations.
- Versatility: They handle various analog inputs, accommodating different sensors and applications.
- Ease of Use: Clear digital displays and intuitive controls enable efficient monitoring and operation.
- Programmability: Customizable settings allow these Panel Meters to be tailored to specific process requirements.
- Reliability: Built with rugged enclosures and high IP ratings (e.g., IP65), these Panel Meters withstand harsh industrial conditions.
Technical Specifications
Typical specifications for 1/8 DIN Panel Meters for batch controller analog input include:
- Input Types: 4-20mA, 0-10V, or other analog signals.
- Accuracy: ±0.1% of full scale or better.
- Display: 4-6 digit LED or LCD with customizable brightness and decimal points.
- Power Supply: 12-24V DC or 85-265V AC.
- Communication: RS-232, RS-485, Modbus RTU, or Ethernet.
- Environmental Rating: IP65 or higher for front panel protection.
- Operating Temperature: -10°C to 50°C, suitable for industrial environments.
Conclusion
1/8 DIN Panel Meters for batch controller analog input are essential tools in industrial automation and process control. Their compact size, versatility, and ability to interface with analog sensors make them invaluable for managing batch processes with precision. By ensuring accurate monitoring and control, these Panel Meters enhance efficiency, safety, and quality in various industrial applications.
Understanding the Use of 1/8 DIN Panel Meters for Batch Controllers with Analog Input
Panel Meters are vital components in industrial and manufacturing processes, providing precise measurement and control of various parameters. 1/8 DIN Panel Meters, particularly those designed for batch controllers with analog input, are widely used for their compact size and robust functionality. Below, we explore the industries and applications where these Panel Meters are essential.
What are 1/8 DIN Panel Meters?
1/8 DIN Panel Meters are compact devices with dimensions of approximately 96mm x 48mm, conforming to the DIN standard for industrial control components. They display measurement values from input signals in a digital format, supporting parameters like voltage, current, temperature, or flow. These Panel Meters are designed to handle analog inputs, making them ideal for batch control applications.
The Role of Batch Controllers
Batch controllers manage the production of discrete batches, ensuring precise quantities of materials are processed or mixed. They are critical in industries requiring consistent quality and quantity, such as food processing, pharmaceuticals, and chemical manufacturing. 1/8 DIN Panel Meters for batch control automate these processes, enhancing efficiency and reducing errors.
Application of 1/8 DIN Panel Meters in Batch Control
-
Process Monitoring and Display
- These Panel Meters monitor and display critical process variables like flow rate, temperature, or pressure, ensuring batch processes meet specifications. For example, in chemical manufacturing, they display the flow rate of reactants into a reactor.
-
Analog Signal Conversion
- They convert analog signals from sensors into digital readouts, enabling real-time monitoring and precise control of batch processes.
-
Alarm and Control Functions
- Equipped with alarms and control outputs, these Panel Meters trigger actions like activating cooling systems or stopping processes when parameters deviate from setpoints.
-
Integration with Supervisory Systems
- These Panel Meters integrate with SCADA systems for remote monitoring and control, streamlining complex batch operations.
Industries That Use 1/8 DIN Panel Meters for Batch Control
-
Food and Beverage Manufacturing
- In brewing, baking, or blending, these Panel Meters ensure consistent batch quality by monitoring and controlling parameters like flow or temperature.
-
Pharmaceuticals
- They manage precise dosing of ingredients in drug manufacturing, ensuring compliance with strict regulations.
-
Chemical Processing
- These Panel Meters control complex batch processes, monitoring reactants to maintain safety and quality.
-
Water Treatment
- They regulate chemical dosing and monitor flow rates, ensuring water quality and regulatory compliance.
Conclusion
1/8 DIN Panel Meters for batch controllers with analog input are indispensable in industries requiring precise measurement and control of batch processes. Their ability to monitor, display, and control process variables in real-time ensures consistency, efficiency, and safety in applications like food production, pharmaceuticals, chemical processing, and water treatment. With their compact design and robust features, these Panel Meters play a critical role in modern industrial automation.
Less Information.